Exploring ER Stress Response in Cellular Aging and Neuroinflammation in Alzheimer's Disease

2021 ◽  
pp. 101417
Author(s):  
Md. Sahab Uddin ◽  
Wing Shan Yu ◽  
Lee Wei Lim
Open Biology ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 180024 ◽  
Author(s):  
Shoko Hashimoto ◽  
Takaomi C. Saido

The endoplasmic reticulum (ER) stress response is regarded as an important process in the aetiology of Alzheimer's disease (AD). The accumulation of pathogenic misfolded proteins and the disruption of intracellular calcium (Ca 2+ ) signalling are considered to be fundamental mechanisms that underlie the induction of ER stress, leading to neuronal cell death. Indeed, a number of studies have proposed molecular mechanisms linking ER stress to AD pathogenesis based on results from in vitro systems and AD mouse models. However, stress responsivity was largely different between each mouse model, even though all of these models display AD-related pathologies. While several reports have shown elevated ER stress responses in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic (Tg) AD mouse models, we and other groups, in contrast, observed no such ER stress response in APP-single-Tg or App -knockin mice. Therefore, it is debatable whether the ER stress observed in APP and PS1 double-Tg mice is due to AD pathology. From these findings, the roles of ER stress in AD pathogenesis needs to be carefully addressed in future studies. In this review, we summarize research detailing the relationship between ER stress and AD, and analyse the results in detail.


Author(s):  
Md. Motiar Rahman ◽  
Looniva Shrestha ◽  
Mst Ara Gulshan

Alzheimer's disease (AD) is the most common etiology of dementia amongst aged individuals and a principal public health-related abnormality. It is considered as a multifactorial disorder, with no particular origin identified, and also some modifiable, as well as non-modifiable threats are correlated with its progression and development. The endoplasmic reticulum (ER) stress response is considered as a key process in the pathogenesis of AD. In this chapter, the authors present a summary of related transmembrane kinase proteins responsible for the onset of AD as well as show the interrelationship between ER stress and AD. Finally, the authors demonstrate the therapeutics intervention for AD diagnosis by highlighting the current practices to advance novel therapies.


2020 ◽  
Vol 16 (12) ◽  
pp. 1073-1083 ◽  
Author(s):  
Alessandra Micera ◽  
Luca Bruno ◽  
Andrea Cacciamani ◽  
Mauro Rongioletti ◽  
Rosanna Squitti

Background: Life expectancy is increasing all over the world, although neurodegenerative disorders might drastically affect the individual activity of aged people. Of those, Alzheimer’s Disease (AD) is one of the most social-cost age-linked diseases of industrialized countries. To date, retinal diseases seem to be more common in the developing world and characterize principally aged people. Agerelated Macular Degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with AD, including stress stimuli such as oxidative stress, inflammation and amyloid formations. Method: In both diseases, the detrimental intra/extra-cellular deposits have many similarities. Aging, hypercholesterolemia, hypertension, obesity, arteriosclerosis and smoking are risk factors to develop both diseases. Cellular aging routes have similar organelle and signaling patterns in retina and brain. The possibility to find out new research strategies represent a step forward to disclose potential treatment for both of them. Essential trace metals play critical roles in both physiological and pathological condition of retina, optic nerve and brain, by influencing metabolic processes chiefly upon complex multifactorial pathogenesis. Conclusion: Hence, this review addresses current knowledge about some up-to-date investigated essential trace metals associated with AD and AMD. Changes in the levels of systemic and ocular fluid essential metals might reflect the early stages of AMD, possibly disclosing neurodegeneration pathways shared with AD, which might open to potential early detection.


Biomaterials ◽  
2021 ◽  
pp. 120757
Author(s):  
Yingying Shi ◽  
Yichao Lu ◽  
Chunqi Zhu ◽  
Zhenyu Luo ◽  
Xiang Li ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 255
Author(s):  
Katharina F. Witting ◽  
Monique P.C. Mulder

Post-translational modification with Ubiquitin-like proteins represents a complex signaling language regulating virtually every cellular process. Among these post-translational modifiers is Ubiquitin-fold modifier (UFM1), which is covalently attached to its substrates through the orchestrated action of a dedicated enzymatic cascade. Originally identified to be involved embryonic development, its biological function remains enigmatic. Recent research reveals that UFM1 regulates a variety of cellular events ranging from DNA repair to autophagy and ER stress response implicating its involvement in a variety of diseases. Given the contribution of UFM1 to numerous pathologies, the enzymes of the UFM1 cascade represent attractive targets for pharmacological inhibition. Here we discuss the current understanding of this cryptic post-translational modification especially its contribution to disease as well as expand on the unmet needs of developing chemical and biochemical tools to dissect its role.


2006 ◽  
Vol 8 (11-12) ◽  
pp. 1975-1986 ◽  
Author(s):  
Vittorio Calabrese ◽  
Rukhsana Sultana ◽  
Giovanni Scapagnini ◽  
Eleonora Guagliano ◽  
Maria Sapienza ◽  
...  

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Erik A Blackwood ◽  
Christopher C Glembotski

Rationale: Atrial natriuretic peptide (ANP) is stored in the heart in large dense core granules of atrial myocytes as a biologically inactive precursor, pro-ANP. Hemodynamic stress and atrial stretch stimulate coordinate secretion and proteolytic cleavage of pro-ANP to its bioactive form, ANP, which promotes renal salt excretion and vasodilation, which, together contribute to decreasing blood pressure. While the ATF6 branch of the ER stress response has been studied in ventricular tissue mouse models of myocardial ischemia and pathological hypertrophy, roles for ATF6 and ER stress on the endocrine function of atrial myocytes have not been studied. Objective/Methods: To address this gap in our knowledge, we knocked down ATF6 in primary cultured neonatal rat atrial myocytes (NRAMs) using a chemical inhibitor of the proteolytic cleavage site enabling ATF6 activation and siRNA and measured ANP expression and secretion basally and in response to alpha- adrenergic agonist stimulation using phenylephrine. We also compared the ANP secretion from wild- type mice and ATF6 knockout mice in an ex vivo Langendorff model of the isolated perfused heart. Results: ATF6 knockdown in NRAMs significantly impaired basal and phenylephrine-stimulated ANP secretion. ATF6 knockout mice displayed lower levels of ANP in atrial tissue at baseline as well as after phenylephrine treatment. Similarly, in the ex vivo isolated perfused heart model, less ANP was detected in effluent of ATF6 knockout hearts compared to wild-type hearts. Conclusions: The ATF6 branch of the ER stress response is necessary for efficient co-secretional processing of pro-ANP to ANP and for agonist-stimulated ANP secretion from atrial myocytes. As ANP is secreted in a regulated manner in response to a stimulus and pro-ANP is synthesized and packaged through the classical secretory pathway, we posit that ATF6 is required for adequate expression, folding, trafficking, processing and secretion of biologically active ANP from the endocrine heart.


Sign in / Sign up

Export Citation Format

Share Document