Embedding a high speed interval type-2 fuzzy controller for a real plant into an FPGA

2012 ◽  
Vol 12 (3) ◽  
pp. 988-998 ◽  
Author(s):  
Roberto Sepúlveda ◽  
Oscar Montiel ◽  
Oscar Castillo ◽  
Patricia Melin
Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Wen-Jer Chang ◽  
Yu-Wei Lin ◽  
Yann-Horng Lin ◽  
Chin-Lin Pen ◽  
Ming-Hsuan Tsai

In many practical systems, stochastic behaviors usually occur and need to be considered in the controller design. To ensure the system performance under the effect of stochastic behaviors, the controller may become bigger even beyond the capacity of practical applications. Therefore, the actuator saturation problem also must be considered in the controller design. The type-2 Takagi-Sugeno (T-S) fuzzy model can describe the parameter uncertainties more completely than the type-1 T-S fuzzy model for a class of nonlinear systems. A fuzzy controller design method is proposed in this paper based on the Interval Type-2 (IT2) T-S fuzzy model for stochastic nonlinear systems subject to actuator saturation. The stability analysis and some corresponding sufficient conditions for the IT2 T-S fuzzy model are developed using Lyapunov theory. Via transferring the stability and control problem into Linear Matrix Inequality (LMI) problem, the proposed fuzzy control problem can be solved by the convex optimization algorithm. Finally, a nonlinear ship steering system is considered in the simulations to verify the feasibility and efficiency of the proposed fuzzy controller design method.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4181 ◽  
Author(s):  
Chun-Hui Lin ◽  
Shyh-Hau Wang ◽  
Cheng-Jian Lin

In this paper, a navigation method is proposed for cooperative load-carrying mobile robots. The behavior mode manager is used efficaciously in the navigation control method to switch between two behavior modes, wall-following mode (WFM) and goal-oriented mode (GOM), according to various environmental conditions. Additionally, an interval type-2 neural fuzzy controller based on dynamic group artificial bee colony (DGABC) is proposed in this paper. Reinforcement learning was used to develop the WFM adaptively. First, a single robot is trained to learn the WFM. Then, this control method is implemented for cooperative load-carrying mobile robots. In WFM learning, the proposed DGABC performs better than the original artificial bee colony algorithm and other improved algorithms. Furthermore, the results of cooperative load-carrying navigation control tests demonstrate that the proposed cooperative load-carrying method and the navigation method can enable the robots to carry the task item to the goal and complete the navigation mission efficiently.


Author(s):  
P. Selvaraj ◽  
R. Sakthivel ◽  
O. M. Kwon ◽  
M. Muslim

This paper focuses on the problem of disturbance rejection for a class of interval type-2 (IT-2) fuzzy systems via equivalence-input-disturbance (EID)-based approach. The main objective of this work is to design a fuzzy state-feedback controller combined with a disturbance estimator such that the output of the fuzzy system perfectly tracks the given reference signal without steady-state error and produces an EID to eliminate the influence of the actual disturbances. By constructing a suitable Lyapunov function and using linear matrix inequality (LMI) technique, a new set of sufficient conditions is established in terms of linear matrix inequalities for the existence of fuzzy controller. Finally, a simple pendulum model is considered to illustrate the effectiveness and applicability of the proposed EID-based control design.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401775248 ◽  
Author(s):  
Tzu-Chao Lin ◽  
Chao-Chun Chen ◽  
Cheng-Jian Lin

This study developed and effectively implemented an efficient navigation control of a mobile robot in unknown environments. The proposed navigation control method consists of mode manager, wall-following mode, and towards-goal mode. The interval type-2 neural fuzzy controller optimized by the dynamic group differential evolution is exploited for reinforcement learning to develop an adaptive wall-following controller. The wall-following performance of the robot is evaluated by a proposed fitness function. The mode manager switches to the proper mode according to the relation between the mobile robot and the environment, and an escape mechanism is added to prevent the robot falling into the dead cycle. The experimental results of wall-following show that dynamic group differential evolution is superior to other methods. In addition, the navigation control results further show that the moving track of proposed model is better than other methods and it successfully completes the navigation control in unknown environments.


2020 ◽  
pp. 1-19
Author(s):  
Ritu Rani De (Maity) ◽  
Rajani K. Mudi ◽  
Chanchal Dey

This paper focuses on the development of a stable Mamdani type-2 fuzzy logic based controller for automatic control of servo systems. The stability analysis of the fuzzy controller has been done by employing the concept of Lyapunov. The Lyapunov approach results in the derivation of an original stability analysis that can be used for designing the rule base of our proposed online gain adaptive Interval Type-2 Fuzzy Proportional Derivative controller (IT2-GFPD) for servo systems with assured stability. In this approach a Quadratic positive definite Lyapunov function is used and sufficient stability conditions are satisfied by the adaptive type-2 fuzzy logic control system. Illustrative simulation studies with linear and nonlinear models as well as experimental results on a real-time servo system validate the stability and robustness of the developed intelligent IT2-GFPD. A comparative performance study of IT2-GFPD with other controllers in presence of noise and disturbance also proves the superiority of the proposed controller.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 61775-61789 ◽  
Author(s):  
Jinquan Zheng ◽  
Wenli Du ◽  
Ioana Nascu ◽  
Yuanming Zhu ◽  
Weimin Zhong

Sign in / Sign up

Export Citation Format

Share Document