New constraints on space–time Planck scale fluctuations from established high energy astronomy observations

2004 ◽  
Vol 20 (6) ◽  
pp. 703-708 ◽  
Author(s):  
R Le Gallou
Keyword(s):  
Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 729
Author(s):  
James Moffat

I exploit the close connection between the tessellation of space-time in the Regge calculus and an Eilenberg homology to investigate the deep quantum nature of space-time in a simple bubble universe of a size consistent with the Planck regime. Following the mathematics allows me to define this granulated space-time as the embedding space of the skeleton of a computational spin network inside a quantum computer. This approach can be regarded as a quantum simulation of the equivalent physics. I can, therefore, define a fundamental characterisation of any high-energy physical process at the Planck scale as equivalent to a quantum simulation inside a quantum computer.


2020 ◽  
Vol 29 (1) ◽  
pp. 40-46
Author(s):  
Dmitri L. Khokhlov

AbstractThe studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.


2015 ◽  
Vol 91 (4) ◽  
Author(s):  
Floyd W. Stecker ◽  
Sean T. Scully ◽  
Stefano Liberati ◽  
David Mattingly

Author(s):  
Espen Haug

We have recently presented a unified quantum gravity theory [1]. Here we extend on that work and present an even simpler version of that theory. For about hundred years, modern physics has not been able to build a bridge between quantum mechanics and gravity. However, a solution may be found here; we present our quantum gravity theory, which is rooted in indivisible particles where matter and gravity are related to collisions and can be described by collision space-time. In this paper, we also show that we can formulate a quantum wave equation rooted in collision space-time, which is equivalent to mass and energy.The beauty of our theory is that most of the main equations that currently exist in physics are not changed (in terms of predictions), except at the Planck scale. The Planck scale is directly linked to gravity and gravity is, surprisingly, actually a Lorentz symmetry as well as a form of Heisenberg uncertainty break down at the Planck scale. Our theory gives a dramatic simplification of many physics formulas without altering the output predictions. The relativistic wave equation, the relativistic energy momentum relation, and Minkowski space can all be represented by simpler equations when we understand mass at a deeper level. This not attained at a cost, but rather a reflection of the benefit in having gravity and electromagnetism unified under the same theory.


Author(s):  
Petri Tuisku ◽  
Tuomas K Pernu ◽  
Arto Annila

The concept of time is examined using the second law of thermodynamics that was recently formulated as an equation of motion. According to the statistical notion of increasing entropy, flows of energy diminish differences between energy densities that form space. The flow of energy is identified with the flow of time. The non-Euclidean energy landscape, i.e. the curved space–time, is in evolution when energy is flowing down along gradients and levelling the density differences. The flows along the steepest descents, i.e. geodesics are obtained from the principle of least action for mechanics, electrodynamics and quantum mechanics. The arrow of time, associated with the expansion of the Universe, identifies with grand dispersal of energy when high-energy densities transform by various mechanisms to lower densities in energy and eventually to ever-diluting electromagnetic radiation. Likewise, time in a quantum system takes an increment forwards in the detection-associated dissipative transformation when the stationary-state system begins to evolve pictured as the wave function collapse. The energy dispersal is understood to underlie causality so that an energy gradient is a cause and the resulting energy flow is an effect. The account on causality by the concepts of physics does not imply determinism; on the contrary, evolution of space–time as a causal chain of events is non-deterministic.


2014 ◽  
Vol 23 (04) ◽  
pp. 1450019 ◽  
Author(s):  
Paolo Castorina ◽  
Helmut Satz

For hadron production in high energy collisions, causality requirements lead to the counterpart of the cosmological horizon problem: the production occurs in a number of causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) must be conserved locally in spatially restricted correlation clusters. This provides a theoretical basis for the observed suppression of strangeness production in elementary interactions (pp, e+e-). In contrast, the space-time superposition of many collisions in heavy ion interactions largely removes these causality constraints, resulting in an ideal hadronic resonance gas in full equilibrium.


2006 ◽  
Vol 15 (01) ◽  
pp. 255-258 ◽  
Author(s):  
B. G. SIDHARTH
Keyword(s):  

It is taken for granted in modern high energy approaches, that the Planck scale is the minimum scale. We investigate why this should be so, and provide a rationale for its numerical value.


1999 ◽  
Vol 14 (26) ◽  
pp. 4079-4120 ◽  
Author(s):  
LUIS J. GARAY

In this work, I review some aspects concerning the evolution of quantum low-energy fields in a foamlike space–time, with involved topology at the Planck scale but with a smooth metric structure at large length scales, as follows. Quantum gravitational fluctuations may induce a minimum length thus introducing an additional source of uncertainty in physics. The existence of this resolution limit casts doubts on the metric structure of space–time at the Planck scale and opens a doorway to nontrivial topologies, which may dominate Planck scale physics. This foamlike structure of space–time may show up in low-energy physics through loss of quantum coherence and mode-dependent energy shifts, for instance, which might be observable. Space–time foam introduces non-local interactions that can be modeled by a quantum bath, and low-energy fields evolve according to a master equation that displays such effects. Similar laws are also obtained for quantum mechanical systems evolving according to good real clocks, although the underlying Hamiltonian structure in this case establishes serious differences among both scenarios.


Sign in / Sign up

Export Citation Format

Share Document