In vivo administration of d-arginine: effects on blood pressure and vascular function in angiotensin II-induced hypertensive rats

2004 ◽  
Vol 176 (2) ◽  
pp. 219-225 ◽  
Author(s):  
Gerald Wölkart ◽  
Heike Stessel ◽  
Friedrich Brunner
2020 ◽  
Vol 19 (4) ◽  
pp. 789-796
Author(s):  
Moon Jain ◽  
Hina Iqbal ◽  
Pankaj Yadav ◽  
Himalaya Singh ◽  
Debabrata Chanda ◽  
...  

Purpose: To determine the effects of lysosomal inhibition of autophagy by chloroquine (CHQ) onhypertension-associated changes in the endothelial functions. Method: Angiotensin II (Ang II)-treated human endothelial cell line EA.hy926 and renovascularhypertensive rats were subjected to CHQ treatment (in vitro: 0.5, 1, and 2.5 μM; in vivo: 50 mg/kg/dayfor three weeks). Changes in the protein expressions of LC3b II (autophagosome formation marker) andp62 (autophagy flux marker) were assessed using immunoblotting. Cell migration assay, tubuleformation assay (in vitro), and organ bath studies (in vivo) were performed to evaluate the endothelialfunctions. Hemodynamic parameters were measured as well. Results: A higher expression of LC3b II and a reduced expression of p62 observed in the Ang II-treatedendothelial cells, as well as in the aorta of the hypertensive rats, indicated enhanced autophagy.Treatment with CHQ resulted in reduced autophagy flux (in vitro as well as in vivo) and suppressed AngII-induced endothelial cell migration and angiogenesis (in vitro). The treatment with CHQ was alsoobserved to prevent increase in blood pressure in hypertensive rats and preserved acetylcholineinducedrelaxation in phenylephrine-contracted aorta from the hypertensive rats. In addition, chloroquineattenuated Ang II-induced contractions in the aorta of normotensive as well as hypertensive rats. Conclusion: These observations indicated that CHQ lowers the blood pressure and preserves thevascular endothelial function during hypertension. Keywords: Angiotensin II, Autophagy, Chloroquine, Endothelial function, Hypertension, Vasculardysfunction


2009 ◽  
Vol 87 (11) ◽  
pp. 944-953 ◽  
Author(s):  
Robert M.K.W. Lee ◽  
Lili Ding ◽  
Chao Lu ◽  
Li-Ying Su ◽  
Yu-Jing Gao

We studied the role of perivascular adipose tissue (PVAT) in the control of vascular function in an in vivo experimental model of hypertension produced by angiotensin II infusion by osmotic minipump in adult male Wistar rats. Two weeks after infusion with angiotensin II, blood pressure in treated rats was significantly elevated but heart rate was reduced compared with control rats infused with physiological saline. Contraction of aorta from the 2 groups of rats in response to phenylephrine or serotonin was significantly attenuated by the presence of PVAT in both the presence and absence of endothelium. This attenuation effect on contraction to phenylephrine was higher, however, in vessels from control rats than in vessels from hypertensive rats in the absence of endothelium. In the mesenteric resistance arteries, lumen diameter was larger in both hypertensive and control vessels with intact PVAT than in vessels with PVAT removed. The medial wall was thicker in arteries from hypertensive rats. The presence of PVAT potentiated the contraction induced by KCl in mesenteric arteries from control rats, but not in hypertensive rats. PVAT also attenuated the contraction of mesenteric arteries in response to phenylephrine or serotonin in both hypertensive and control groups. Mesenteric arteries from hypertensive rats were more responsive to stimulation by serotonin than those from control rats. We conclude that the increased blood pressure of Wistar rats that occurred after infusion with angiotensin II was associated with changes in the functions of PVAT in the aorta and mesenteric arteries and in the structure and function of resistance arteries.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Soyi Park ◽  
Ki Hoon Lee ◽  
Hakjoon Choi ◽  
Goeun Jang ◽  
Wan Seok Kang ◽  
...  

Abstract Background We previously showed that enzymatically hydrolyzed Dendropanax morbiferus H. Lév. leaf (Hy-DP) and unripe Rubus coreanus Miq. (5-uRCK) extracts exhibit potent vasodilator effects on isolated aortic rings from rats partly through endothelium-dependent and endothelium-independent mechanisms. These two extracts have different mechanisms of action; however, their combined effect on antihypertensive activity has not been explored. Methods The present study aims to investigate the effect of a chronic optimized mixture (HDR-2, composed of Hy-DP and 5-uRCK in a 2:1 mass ratio) on vascular tension and blood pressure in two different hypertensive rat models. Results The results showed that HDR-2 concentration-dependently relaxed endothelium-intact and endothelium-denuded aortic rings precontracted with phenylephrine. Antihypertensive effects were assessed in vivo on a 1 kidney-1 clip (1 K-1C) rat model of hypertension and spontaneously hypertensive rats (SHRs). Acute HDR-2 treatment significantly decreased systolic blood pressure (SBP) 3 h posttreatment in both models. Chronic HDR-2 administration also significantly decreased SBP in the hypertensive rat models. Moreover, HDR-2 increased eNOS protein expression and phosphorylation levels in the aorta. Conclusion Chronic HDR-2 administration may effectively improve vascular function by decreasing plasma angiotensin-converting enzyme (ACE) activity and AngII levels. HDR-2 significantly improved acetylcholine (ACh)-induced aortic endothelium-dependent relaxation and affected sodium nitroprusside (SNP)-induced endothelium-independent relaxation in SHRs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Meizhu Wu ◽  
Xiangyan Wu ◽  
Ying Cheng ◽  
Zhiqing Shen ◽  
Xiaoping Chen ◽  
...  

Objective: As a well-known traditional Chinese medicine formula prescribed by academician Ke-ji Chen, Qingda granule (QDG) lowered the blood pressure of spontaneously hypertensive rats and attenuated hypertensive cardiac remodeling and inflammation. However, its functional role and underlying mechanisms on hypertensive vascular function remain largely unclear. This study aims to assess the effects of QDG treatment on Angiotensin II- (AngII-) induced hypertension and vascular function and explore its underlying mechanisms both in vitro and in vivo.Methods: In an in vivo study, 25 male C57BL/6 mice were randomly divided into five groups, including Control, AngII, AngII + QDG-L, AngII + QDG-M, and AngII + QDG-H groups (n = 5 for each group). Mice in AngII and AngII + QDG-L/-M/-H groups were infused with AngII (500 ng/kg/min), while in the Control group, they were infused with saline. Mice in AngII + QDG were intragastrically given different concentrations of QDG (0.5725, 1.145, or 2.29 g/kg/day), while in Control and AngII groups, they were intragastrically given equal volumes of double distilled water for 2 weeks. Blood pressure was determined at 0, 1, and 2 weeks of treatment. Ultrasound was used to detect the pulse wave velocity (PWV) and HE staining to detect the pathological change of the abdominal aorta. RNA sequencing (RNA-seq) was performed to identify the differentially expressed transcripts (DETs) and related signaling pathways. IHC was used to detect the expression of p-ERK in the abdominal aorta. Primary isolated rat vascular smooth muscle cells (VSMCs) were used to assess the cellular Ca2+ release and activation of the ERK pathway by confocal microscope and western blotting analysis, respectively.Results: QDG treatment significantly alleviated the elevated blood pressure, the PWV, and the thickness of the abdominal aorta in AngII-induced hypertensive mice. RNA-seq and KEGG analyses identified 1,505 DETs and multiple enriched pathways (including vascular contraction and calcium signaling pathway) after QDG treatment. Furthermore, confocal microscope showed that QDG treatment partially attenuated the increase of Ca2+ release with the stimulation of AngII in cultured VSMCs. In addition, IHC and western blotting indicated that QDG treatment also partially alleviated the increase of phospho-ERK levels in abdominal aorta tissues of mice and cultured VSMCs after the infusion or stimulation of AngII.Conclusion: QDG treatment attenuated the elevation of blood pressure, abdominal aorta dysfunction, pathological changes, Ca2+ release, and activation of the ERK signaling pathway.


1984 ◽  
Vol 66 (4) ◽  
pp. 473-480 ◽  
Author(s):  
Robert F. Bing ◽  
John D. Swales ◽  
David Taverner ◽  
Herbert Thurston

1. Pressor responses to angiotensin II and noradrenaline have been examined in two models of renovascular hypertension (two-kidney one-clip and one-kidney one-clip) before and 24 h after removal of the renal artery clip to examine the possible role of pressor hyper-responsiveness in the maintenance of hypertension. Early and chronic hypertension was studied to assess the part played by progressive structural hypertrophy. 2. Plasma renin concentration was elevated in early two-kidney hypertensive rats, whereas it was similar to that in age-matched normal rats in early one-kidney and chronic two-kidney hypertensive rats. Twenty-four hours after unclipping plasma renin concentration was the same in all groups. Unclipping restored blood pressure to normal levels by 24 h, whereas sham-operated animals remained hypertensive. 3. Angiotensin II responses in both early and chronic two-kidney one-clip hypertensive rats were lower than in age-matched normal rats. In unclipped rats responses were similar to those in normals. One-kidney hypertensive rats had similar angiotensin II responses to normal rats and there was no change with unclipping. Blockade of endogenous angiotensin II production by converting enzyme inhibition resulted in similar angiotensin II responses in hypertensive and unclipped groups. 4. In normal rats, angiotensin II responses were inversely related to plasma renin concentration (r = −0.47, P<0.001). Angiotensin II responses in hypertensive and unclipped rats were found to show a similar relationship to plasma renin concentration as normal rats. 5. Noradrenaline responses in hypertensive rats were similar to those in age-matched normals and there was no significant change with unclipping. In normal rats there was no relationship between noradrenaline responses and plasma renin concentration (r = −0.11, P<0.5). 6. These results emphasize the importance of the activity of endogenous renin-angiotensin in determining angiotensin II responses in vivo. It is concluded that neither the maintenance of hypertension nor the fall in blood pressure produced by removal of the renal artery clip in renovascular hypertension is due to changes in responsiveness to angiotensin II.


2020 ◽  
Vol 20 (8) ◽  
pp. 1253-1261
Author(s):  
Mourad Akdad ◽  
Mohamed Eddouks

Aims: The present study was performed in order to analyze the antihypertensive activity of Micromeria graeca (L.) Benth. ex Rchb. Background: Micromeria graeca (L.) Benth. ex Rchb is an aromatic and medicinal plant belonging to the Lamiaceae family. This herb is used to treat various pathologies such as cardiovascular disorders. Meanwhile, its pharmacological effects on the cardiovascular system have not been studied. Objective: The present study aimed to evaluate the effect of aqueous extract of aerial parts of Micromeria graeca (AEMG) on the cardiovascular system in normotensive and hypertensive rats. Methods: In this study, the cardiovascular effect of AEMG was evaluated using in vivo and in vitro investigations. In order to assess the acute effect of AEMG on the cardiovascular system, anesthetized L-NAME-hypertensive and normotensive rats received AEMG (100 mg/kg) orally and arterial blood pressure parameters were monitored during six hours. In the sub-chronic study, rats were orally treated for one week, followed by blood pressure assessment during one week of treatment. Blood pressure was measured using a tail-cuff and a computer-assisted monitoring device. In the second experiment, isolated rat aortic ring pre-contracted with Epinephrine (EP) or KCl was used to assess the vasorelaxant effect of AEMG. Results: Oral administration of AEMG (100 mg/kg) provoked a decrease of arterial blood pressure parameters in hypertensive rats. In addition, AEMG induced a vasorelaxant effect in thoracic aortic rings pre-contracted with EP (10 μM) or KCl (80 mM). This effect was attenuated in the presence of propranolol and methylene blue. While in the presence of glibenclamide, L-NAME, nifedipine or Indomethacin, the vasorelaxant effect was not affected. Conclusion: This study showed that Micromeria graeca possesses a potent antihypertensive effect and relaxes the vascular smooth muscle through β-adrenergic and cGMP pathways.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2305
Author(s):  
Wan-Ju Yeh ◽  
Jung Ko ◽  
Wei-Yi Cheng ◽  
Hsin-Yi Yang

High blood pressure is a crucial risk factor for many cardiovascular diseases, and a diet rich in whole-grain foods may modulate blood pressure. This study investigated the effects of dehulled adlay consumption on blood pressure in vivo. We initially fed spontaneous hypertensive rats diets without (SHR group) or with 12 or 24% dehulled adlay (SHR + LA and SHR + HA groups), and discovered that it could limit blood pressure increases over a 12-week experimental period. Although we found no significant changes in plasma, heart, and kidney angiotensin-converting enzyme activities, both adlay-consuming groups had lower endothelin-1 and creatinine concentrations than the SHR group; the SHR + HA group also had lower aspartate aminotransferase and uric acid levels than the SHR group did. We later recruited 23 participants with overweight and obesity, and they consumed 60 g of dehulled adlay daily for a six-week experimental period. At the end of the study, we observed a significant decrease in the group’s systolic blood pressure (SBP), and the change in SBP was even more evident in participants with high baseline SBP. In conclusion, our results suggested that daily intake of dehulled adlay had beneficial effects in blood-pressure management. Future studies may further clarify the possible underlying mechanisms for the consuming of dehulled adlay as a beneficial dietary approach for people at risk of hypertension.


1988 ◽  
Vol 255 (4) ◽  
pp. H729-H735 ◽  
Author(s):  
M. Sautel ◽  
J. Sacquet ◽  
M. Vincent ◽  
J. Sassard

Several indirect evidences of alterations in the central catecholaminergic structures were obtained in genetically hypertensive rats. Because they could be of pathogenetic value, we measured, in the present work, the in vivo turnover (TO) of norepinephrine (NE) in brain areas of 5- and 22-wk-old genetically hypertensive (LH) rats of the Lyon strain, and their simultaneously selected normotensive (LN) and low blood pressure (LL) controls. Among the changes observed, the increased TO of NE in the A2 and A6 regions of 5-wk-old LH rats and its decrease in the posteroventral hypothalamic nucleus of 22-wk-old LH animals appeared likely to compensate for hypertension. On the contrary, the decreased TO of NE in the anterior hypothalamic nucleus observed at 5 wk and in the A6 and A1 areas at 22 wk of age in LH rats could participate in the development or the maintenance of hypertension. Above all, it was postulated that the increased TO of NE found in the A7 region of 5-wk-old LH rats could play a primary role in the pathogenesis of hypertension in the Lyon model.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Daniel J Fehrenbach ◽  
Meena S Madhur

Hypertension, or an elevated blood pressure, is the primary modifiable risk factor for cardiovascular disease, the number one cause of mortality worldwide. We previously demonstrated that Th17 activation and interleukin 17A (IL-17A)/IL-21 production is integral for the full development of a hypertensive phenotype as well as the renal and vascular damage associated with hypertension. Rho-associated coiled-coil containing protein Kinase 2 (ROCK2) serves as a molecular switch upregulating Th17 and inhibiting regulatory T cell (Treg) differentiation. We hypothesize that hypertension is characterized by excessive T cell ROCK2 activation leading to increased Th17/Treg ratios and ultimately end-organ damage. We first showed in vitro that KD025, an experimental orally bioavailable ROCK2 inhibitor inhibits Th17 cell proliferation and IL-17A/IL-21 production. To determine if hypertensive stimuli such as endothelial stretch increases T cell ROCK2 expression, we cultured human aortic endothelial cells exposed to 5% (normotensive) or 10% (hypertensive) stretch with circulating human T cells and HLA-DR+ antigen presenting cells. Hypertensive stretch increased T cell ROCK2 expression 2-fold. We then tested the effect of ROCK2 inhibition with KD025 (50mg/kg i.p. daily) in vivo on angiotensin II (Ang II)-induced hypertension. Treatment with KD025 significantly attenuated the hypertensive response within 1 week of Ang II treatment (systolic blood pressure: 139± 8 vs 108±7mmHg) and this persisted for the duration of the 4 week study reaching blood pressures 20 mmHg lower (135±13mmHg) than vehicle treated mice (158±4mmHg p<0.05 effect of treatment 2-way Repeated Measures ANOVA). Flow cytometric analysis of tissue infiltrating leukocytes revealed that KD025 treatment increased Treg/Th17 ratios in the kidney (0.61±0.03 vs 0.79±0.08, p<0.05 student’s t-test). Thus, T cell ROCK2 may be a novel therapeutic target for the treatment of hypertension.


Sign in / Sign up

Export Citation Format

Share Document