Z-Ligustilide protects vascular endothelial cells from oxidative stress and rescues high fat diet-induced atherosclerosis by activating multiple NRF2 downstream genes

2019 ◽  
Vol 284 ◽  
pp. 110-120 ◽  
Author(s):  
Yao Zhu ◽  
Yajie Zhang ◽  
Xia Huang ◽  
Yong Xie ◽  
Yuan Qu ◽  
...  
2021 ◽  
Vol 22 (23) ◽  
pp. 13084
Author(s):  
Seung-Jin Lee ◽  
Dong-Soon Im

GPR55 recognizes several lipid molecules such as lysophosphatidylinositol. GPR55 expression was reported in human monocytes. However, its role in monocyte adhesion and atherosclerosis development has not been studied. The role of GPR55 in monocyte adhesion and atherosclerosis development was investigated in human THP-1 monocytes and ApoE−/− mice using O-1602 (a potent agonist of GPR55) and CID16020046 (a specific GPR55 antagonist). O-1602 treatment significantly increased monocyte adhesion to human umbilical vein endothelial cells, and the O-1602-induced adhesion was inhibited by treatment with CID16020046. O-1602 induced the expression of Mac-1 adhesion molecules, whereas CID16020046 inhibited this induction. Analysis of the promoter region of Mac-1 elucidated the binding sites of AP-1 and NF-κB between nucleotides −750 and −503 as GPR55 responsive elements. O-1602 induction of Mac-1 was found to be dependent on the signaling components of GPR55, that is, Gq protein, Ca2+, CaMKK, and PI3K. In Apo−/− mice, administration of CID16020046 ameliorated high-fat diet-induced atherosclerosis development. These results suggest that high-fat diet-induced GPR55 activation leads to the adhesion of monocytes to endothelial cells via induction of Mac-1, and CID16020046 blockage of GPR55 could suppress monocyte adhesion to vascular endothelial cells through suppression of Mac-1 expression, leading to protection against the development of atherosclerosis.


2006 ◽  
Vol 290 (5) ◽  
pp. C1399-C1410 ◽  
Author(s):  
Helena Parfenova ◽  
Shyamali Basuroy ◽  
Sujoy Bhattacharya ◽  
Dilyara Tcheranova ◽  
Yan Qu ◽  
...  

In cerebral circulation, epileptic seizures associated with excessive release of the excitatory neurotransmitter glutamate cause endothelial injury. Heme oxygenase (HO), which metabolizes heme to a vasodilator, carbon monoxide (CO), and antioxidants, biliverdin/bilirubin, is highly expressed in cerebral microvessels as a constitutive isoform, HO-2, whereas the inducible form, HO-1, is not detectable. Using cerebral vascular endothelial cells from newborn pigs and HO-2-knockout mice, we addressed the hypotheses that 1) glutamate induces oxidative stress-related endothelial death by apoptosis, and 2) HO-1 and HO-2 are protective against glutamate cytotoxicity. In cerebral endothelial cells, glutamate (0.1–2.0 mM) increased formation of reactive oxygen species, including superoxide radicals, and induced major keystone events of apoptosis, such as NF-κB nuclear translocation, caspase-3 activation, DNA fragmentation, and cell detachment. Glutamate-induced apoptosis was greatly exacerbated in HO-2 gene-deleted murine cerebrovascular endothelial cells and in porcine cells with pharmacologically inhibited HO-2 activity. Glutamate toxicity was prevented by superoxide dismutase, suggesting apoptotic changes are oxidative stress related. When HO-1 was pharmacologically upregulated by cobalt protoporphyrin, apoptotic effects of glutamate in cerebral endothelial cells were completely prevented. Glutamate-induced reactive oxygen species production and apoptosis were blocked by a CO-releasing compound, CORM-A1 (50 μM), and by bilirubin (1 μM), consistent with the antioxidant and cytoprotective roles of the end products of HO activity. We conclude that both HO-1 and HO-2 have anti-apoptotic effects against oxidative stress-related glutamate toxicity in cerebral vascular endothelium. Although HO-1, when induced, provides powerful protection, HO-2 is an essential endogenous anti-apoptotic factor against glutamate toxicity in the cerebral vascular endothelium.


Phytomedicine ◽  
2019 ◽  
Vol 52 ◽  
pp. 206-215 ◽  
Author(s):  
Weirong Wang ◽  
Chenxu Shang ◽  
Wei Zhang ◽  
Zhen Jin ◽  
Feng Yao ◽  
...  

2016 ◽  
Vol 11 (5) ◽  
pp. 383 ◽  
Author(s):  
Leila Safaeian ◽  
SeyyedEbrahim Sajjadi ◽  
ShaghayeghHaghjooy Javanmard ◽  
Hossein Montazeri ◽  
Fariba Samani

1993 ◽  
Vol 264 (3) ◽  
pp. C715-C722 ◽  
Author(s):  
D. Lu ◽  
N. Maulik ◽  
I. I. Moraru ◽  
D. L. Kreutzer ◽  
D. K. Das

Cellular organisms respond at the cellular and molecular level when confronted with sudden changes in environment, and molecular adaptation represents the ability of the cells to acclimate themselves to their new environment. In this study we examined the response of bovine vascular endothelial cells (VEC) to the oxidative stress by exposing the cultured cells to two different concentrations of H2O2, 0.04 or 0.08 mM, for 18-24 h. H2O2-exposed VEC displayed good viability (85-90% for 0.04 mM H2O2; 75-80% for 0.08 mM H2O2) and exhibited normal morphology. H2O2 treatment of the VEC was associated with the expression of a number of new proteins, as demonstrated by two-dimensional gel electrophoresis of total cell lysate. Cells exposed to 0.04 mM H2O2 expressed 25 new proteins, whereas 19 newly expressed proteins were detected when the cells were exposed to 0.08 mM H2O2. Western blot analysis of H2O2-treated VEC using specific antibodies to heat-shock proteins (HSP) identified one of these proteins as a member of the HSP 70 family. In addition, H2O2 induced an increase in antioxidative enzyme activities in the VEC, including superoxide dismutase, catalase, and glutathione peroxidase. Moreover, these changes were a truly adaptive phenomenon because challenging the VEC with brief exposure to toxic levels of H2O2 (1 mM for 30 min) showed increased viability (by Trypan blue exclusion test) and decreased injury (by lactate dehydrogenase supernatant-to-cellular ratio determination) in adapted cells (preexposed to 0.04 or 0.08 mM H2O2) compared with control cells.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 17 (3) ◽  
pp. 205-212 ◽  
Author(s):  
Fang-yuan Wang ◽  
Jian Jia ◽  
Huan-huan Song ◽  
Cheng-ming Jia ◽  
Chang-bo Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document