Hepatic melanocortin 1 receptor mediated lipid metabolism in cultured human liver (HEPG2) cells

2021 ◽  
Vol 331 ◽  
pp. e142
Author(s):  
K. Thapa
NanoImpact ◽  
2021 ◽  
Vol 24 ◽  
pp. 100351
Author(s):  
Jia-Bei Li ◽  
Wen-Song Xi ◽  
Shi-Ying Tan ◽  
Yuan-Yuan Liu ◽  
Hao Wu ◽  
...  

2013 ◽  
Vol 16 (2) ◽  
pp. 219-229 ◽  
Author(s):  
Shan He ◽  
Jiejie Hao ◽  
Weibing Peng ◽  
Peiju Qiu ◽  
Chunxia Li ◽  
...  

2019 ◽  
Vol 48 (11) ◽  
pp. 1186-1194
Author(s):  
Tae Hee Kim ◽  
Jeong Jun Lee ◽  
Jungkee Kwon ◽  
Chang Hoon Lee

Author(s):  
Reza Afrisham ◽  
Sahar Sadegh-Nejadi ◽  
Reza Meshkani ◽  
Solaleh Emamgholipour ◽  
Molood Bagherieh ◽  
...  

Introduction: Obesity is a disorder with low-grade chronic inflammation that plays a key role in the hepatic inflammation and steatosis. Moreover, there are studies to support the role of exosomes in the cellular communications, the regulation of metabolic homeostasis and immunomodulatory activity. Accordingly, we aimed to evaluate the influence of plasma circulating exosomes derived from females with normal-weight and obesity on the secretion of inflammatory cytokines in human liver cells. Methods: Plasma circulating exosomes were isolated from four normal (N-Exo) and four obese (O-Exo) women. The exosomes were characterized and approved for CD63 expression (common exosomal protein marker) and morphology/size using the western blot and TEM methods, respectively. The exosomes were used for stimulation of HepG2 cells in vitro. After 24 h incubation, the protein levels of TNF-α,IL-6, and IL-1β were measured in the culture supernatant of HepG2 cells using the ELISA kit. Results: The protein levels of IL-6 and TNF-α in the cells treated with O-Exo and N-Exo reduced significantly in comparison with control group (P=0.039 and P<0.001 respectively), while significance differences were not found between normal and obese groups (P=0.808, and P=0.978 respectively). However, no significant differences were found between three groups in term of IL-1β levels (P=0.069). Based on the correlation analysis, the protein levels of IL-6 were positively correlated with TNF-α (r 0.978, P<0.001). Conclusion: These findings suggest that plasma circulating exosomes have probably anti-inflammatory properties independently from body mass index and may decrease the secretion of inflammatory cytokines in liver. However, further investigations in vitro and in vivo are needed to address the anti-inflammatory function of N-Exo and O-Exo in human liver cells and/or other cells.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4593
Author(s):  
Deepthi Venkatachalapathy ◽  
Chandan Shivamallu ◽  
Shashanka Prasad ◽  
Gopenath Thangaraj Saradha ◽  
Parthiban Rudrapathy ◽  
...  

The edible parts of the plants Camellia sinensis, Vitis vinifera and Withania somnifera were extensively used in ancient practices such as Ayurveda, owing to their potent biomedical significance. They are very rich in secondary metabolites such as polyphenols, which are very good antioxidants and exhibit anti-carcinogenic properties. This study aims to evaluate the anti-cancerous properties of these plant crude extracts on human liver cancer HepG2 cells. The leaves of Camellia sinensis, Withania somnifera and the seeds of Vitis vinifera were collected and methanolic extracts were prepared. Then, these extracts were subjected to DPPH, α- amylase assays to determine the antioxidant properties. A MTT assay was performed to investigate the viability of the extracts of HepG2 cells, and the mode of cell death was detected by Ao/EtBr staining and flow cytometry with PI Annexin- V FITC dual staining. Then, the protein expression of BAX and BCl2 was studied using fluorescent dye to determine the regulation of the BAX and BCl2 genes. We observed that all the three extracts showed the presence of bioactive compounds such as polyphenols or phytochemicals. The W. somnifera bioactive compounds were found to have the highest anti-proliferative activity on human liver cancer cells.


Author(s):  
Alvaro Cerda ◽  
Raul Hernandes Bortolin ◽  
Victor Manriquez ◽  
Luis Salazar ◽  
Tomas Zambrano ◽  
...  

2020 ◽  
Vol 21 (12) ◽  
pp. 4534
Author(s):  
Da Eun Kim ◽  
Bo Yoon Chang ◽  
Byeong Min Jeon ◽  
Jong In Baek ◽  
Sun Chang Kim ◽  
...  

A ginsenoside F2-enhanced mixture (SGL 121) increases the content of ginsenoside F2 by biotransformation. In the present study, we investigated the effect of SGL 121 on nonalcoholic fatty liver disease (NAFLD) in vitro and in vivo. High-fat, high-carbohydrate-diet (HFHC)-fed mice were administered SGL 121 for 12 weeks to assess its effect on improving NAFLD. In HepG2 cells, SGL 121 acted as an antioxidant, a hepatoprotectant, and had an anti-lipogenic effect. In NAFLD mice, SGL 121 significantly improved body fat mass; levels of hepatic triglyceride (TG), hepatic malondialdehyde (MDA), serum total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL); and activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In HepG2 cells, induced by oxidative stress, SGL 121 increased cytoprotection, inhibited reactive oxygen species (ROS) production, and increased antioxidant enzyme activity. SGL 121 activated the Nrf2/HO-1 signaling pathway and improved lipid accumulation induced by free fatty acids (FFA). Sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FAS) expression was significantly reduced in NAFLD-induced liver and HepG2 cells treated with SGL 121. Moreover, SGL 121 activated adenosine monophosphate-activated protein kinase (AMPK), which plays an important role in the regulation of lipid metabolism. The effect of SGL 121 on the improvement of NAFLD seems to be related to its antioxidant effects and activation of AMPK. In conclusion, SGL 121 can be potentially used for the treatment of NAFLD.


2015 ◽  
Vol 35 (10) ◽  
pp. 1160-1168 ◽  
Author(s):  
Saura C. Sahu ◽  
Jiwen Zheng ◽  
Jeffrey J. Yourick ◽  
Robert L. Sprando ◽  
Xiugong Gao

Toxicon ◽  
2015 ◽  
Vol 95 ◽  
pp. 30-37 ◽  
Author(s):  
Ya-Nan Liu ◽  
Yue-Xia Wang ◽  
Xiao-Fang Liu ◽  
Li-Ping Jiang ◽  
Guang Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document