Effects of VO2 nanoparticles on human liver HepG2 cells: Cytotoxicity, genotoxicity, and glucose and lipid metabolism disorders

NanoImpact ◽  
2021 ◽  
Vol 24 ◽  
pp. 100351
Author(s):  
Jia-Bei Li ◽  
Wen-Song Xi ◽  
Shi-Ying Tan ◽  
Yuan-Yuan Liu ◽  
Hao Wu ◽  
...  
2021 ◽  
Author(s):  
Zhanchi Xu ◽  
Zeyuan Lin ◽  
Jingran Zeng ◽  
Rui Chen ◽  
Chuting Li ◽  
...  

Abstract Background: Abnormalities in lipid and glucose metabolism are are constantly occured in type 2 diabetes (T2DM). However, it can be ameliorated by gentiopicroside (GPS). Considering the key role of fibroblast growth factor receptor 1/phosphatidylinositol 3-kinase/protein kinase B (FGFR1/PI3K/AKT) pathway in T2DM, we explore the possible mechanism of GPS on lipid and glucose metabolism through its effects on FGFR1/PI3K/AKT pathway.Methods: Palmitic acid (PA)-induced HepG2 cells and a db/db mice were used to clarify the role and mechanism of polydatin on lipid and glucose metabolism.Results: GPS ameliorated glucose and lipid metabolism disorders in db/db mice and PA-induced HepG2 cells. Furthermore, GPS activated FGFR1/PI3K/AKT pathway including increased the protein expression of FGFR1 and promoted the phosphorylation of PI3K, AKT and FoxO1. Additionally, knockdown of FGFR1 reversed the activation of PI3K/AKT pathway by GPS.Conclusions: The present study demontrates that GPS ameliorates glucose and lipid metabolism disorders via activation of FGFR1/PI3K/AKT pathway.


2018 ◽  
Vol 64 (2) ◽  
pp. 39-45 ◽  
Author(s):  
Nataliia Gorbenko ◽  
Oleksii Borikov ◽  
Olha Ivanova ◽  
K. V. Taran ◽  
T. S. Litvinova ◽  
...  

A sex difference of carbohydrate and lipid metabolism disorders in rats with type 2 diabetes has been studied. It was established that type 2 diabetes leads to a more pronounced deterioration in carbohydrate toleranceand insulin sensitivity in males compared to female rats, but the sex doesn’t affect basal glycemia and fructosamine levels. It was found that the increase of body weight and visceral fat in rats with type 2 diabetes is moremanifested in females than in males. It has been determined that hypertriglyceridemia is higher in diabeticmales compared to diabetic females, and the level of common lipids in the liver, both intact females and femaleswith type 2 diabetes, is lower than that of the males. The obtained results indicate a more expressive impairment of glucose and lipid metabolism in males compared to females with type 2 diabetes


2019 ◽  
Vol 51 (9) ◽  
pp. 890-899
Author(s):  
Xiaoyu Wang ◽  
Jiajie Zhou ◽  
Manlu Shen ◽  
Jiayan Shen ◽  
Xinyue Zhang ◽  
...  

Abstract Chlorpyrifos (CPF) is a widely used insecticide in pest control, and it can affect aquatic animals by contaminating the water. In this study, larval zebrafish were exposed to CPF at concentrations of 30, 100 and 300 μg/l for 7 days. In the CPF-treated group, lipid droplet accumulation was reduced in larval zebrafish. The levels of triglyceride (TG), total cholesterol (TC), and pyruvate were also decreased after CPF exposure. Cellular apoptosis were significantly increased in the heart tissue after CPF exposure compared with the control. Transcription changes in cardiovascular genes were also observed. Through transcriptome analysis, we found that the transcription of 465 genes changed significantly, with 398 upregulated and 67 downregulated in the CPF-treated group, indicating that CPF exposure altered the transcription of genes. Among these altered genes, a number of genes were closely related to the glucose and lipid metabolism pathways. Furthermore, we also confirmed that the transcription of genes related to fatty acid synthesis, TC synthesis, and lipogenesis were significantly decreased in larval zebrafish after exposure to CPF. These results indicated that CPF exposure induced lipid metabolism disorders associated with cardiovascular toxicity in larval zebrafish.


2018 ◽  
Vol 66 (37) ◽  
pp. 9667-9678 ◽  
Author(s):  
Rui Guo ◽  
Beita Zhao ◽  
Yijie Wang ◽  
Dandan Wu ◽  
Yutang Wang ◽  
...  

2021 ◽  
Vol 12 (8) ◽  
pp. 1267-1281
Author(s):  
Ayiguli Alimu ◽  
Haiqiemuhan Abudureman ◽  
Yong-Zhi Wang ◽  
Mei-Yan Li ◽  
Jia-Sui Wang ◽  
...  

2007 ◽  
Vol 2007 (369) ◽  
pp. tw20-tw20
Author(s):  
Elizabeth M. Adler

The liver X receptors (LXR-α and -β) are nuclear transcription factors that have been implicated in both glucose and lipid metabolism; their activation by oxysterol ligands elicits both a decrease in atherosclerosis and antidiabetic effects. Although synthetic LXR ligands decrease hepatic gluconeogenesis and increase lipogenesis in rodent models, the normal rodent diet lacks cholesterol, which led Mitro et al. to search for other ligands. They found that glucose and glucose derivatives stimulated the transcriptional activation of a Gal4-responsive gene reporter in human HepG2 cells expressing constructs in which LXR ligand-binding domains (LBDs) were fused to the Gal4 DNA binding domain and transcriptionally activated LXR-RXR (retinoid X receptor) targets. Cell-free coactivator recruitment assays and scintillation proximity assays indicated that glucose and glucose-6-phosphate were direct LXR agonists that bound to the LXR LBD. Furthermore, glucose protected LXR-α from proteolytic attack and increased the LXR-β melting temperature. Glucose had effects on the transcription of LXR target genes in HEPG2 cells similar to those of known ligands, stimulating the expression of genes involved in fatty acid synthesis and cholesterol homeostasis and inhibiting expression of gluconeogenic genes; moreover, it potentiated the effects of LXR ligands. Similarly, glucose- or sucrose-feeding stimulated the expression of LXR target genes in the livers of fasted mice, even mice that were insulin deficient. Thus, glucose itself appears to act as a ligand for LXR, leading the authors to propose that LXR acts as a "transcriptional switch" to coordinate carbohydrate and lipid metabolism. N. Mitro, P. A. Mak, L. Vargas, C. Godio, E. Hampton, V. Molteni, A. Kreusch, E. Saez, The nuclear receptor LXR is a glucose sensor. Nature445, 219-223 (2007). [PubMed]


PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0202910 ◽  
Author(s):  
Mei Zhao ◽  
Man Man Yuan ◽  
Li Yuan ◽  
Li Li Huang ◽  
Jian Hong Liao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document