scholarly journals Deep learning for detecting building façade elements from images considering prior knowledge

2022 ◽  
Vol 133 ◽  
pp. 104016
Author(s):  
Gaowei Zhang ◽  
Yue Pan ◽  
Limao Zhang
2021 ◽  
Vol 87 (4) ◽  
pp. 283-293
Author(s):  
Wei Wang ◽  
Yuan Xu ◽  
Yingchao Ren ◽  
Gang Wang

Recently, performance improvement in facade parsing from 3D point clouds has been brought about by designing more complex network structures, which cost huge computing resources and do not take full advantage of prior knowledge of facade structure. Instead, from the perspective of data distribution, we construct a new hierarchical mesh multi-view data domain based on the characteristics of facade objects to achieve fusion of deep-learning models and prior knowledge, thereby significantly improving segmentation accuracy. We comprehensively evaluate the current mainstream method on the RueMonge 2014 data set and demonstrate the superiority of our method. The mean intersection-over-union index on the facade-parsing task reached 76.41%, which is 2.75% higher than the current best result. In addition, through comparative experiments, the reasons for the performance improvement of the proposed method are further analyzed.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2293
Author(s):  
Zixiang Yue ◽  
Youliang Ding ◽  
Hanwei Zhao ◽  
Zhiwen Wang

A cable-stayed bridge is a typical symmetrical structure, and symmetry affects the deformation characteristics of such bridges. The main girder of a cable-stayed bridge will produce obvious deflection under the inducement of temperature. The regression model of temperature-induced deflection is hoped to provide a comparison value for bridge evaluation. Based on the temperature and deflection data obtained by the health monitoring system of a bridge, establishing the correlation model between temperature and temperature-induced deflection is meaningful. It is difficult to complete a high-quality model only by the girder temperature. The temperature features based on prior knowledge from the mechanical mechanism are used as the input information in this paper. At the same time, to strengthen the nonlinear ability of the model, this paper selects an independent recurrent neural network (IndRNN) for modeling. The deep learning neural network is compared with machine learning neural networks to prove the advancement of deep learning. When only the average temperature of the main girder is input, the calculation accuracy is not high regardless of whether the deep learning network or the machine learning network is used. When the temperature information extracted by the prior knowledge is input, the average error of IndRNN model is only 2.53%, less than those of BPNN model and traditional RNN. Combining knowledge with deep learning is undoubtedly the best modeling scheme. The deep learning model can provide a comparison value of bridge deformation for bridge management.


2020 ◽  
Vol 12 (22) ◽  
pp. 9785
Author(s):  
Kisu Lee ◽  
Goopyo Hong ◽  
Lee Sael ◽  
Sanghyo Lee ◽  
Ha Young Kim

Defects in residential building façades affect the structural integrity of buildings and degrade external appearances. Defects in a building façade are typically managed using manpower during maintenance. This approach is time-consuming, yields subjective results, and can lead to accidents or casualties. To address this, we propose a building façade monitoring system that utilizes an object detection method based on deep learning to efficiently manage defects by minimizing the involvement of manpower. The dataset used for training a deep-learning-based network contains actual residential building façade images. Various building designs in these raw images make it difficult to detect defects because of their various types and complex backgrounds. We employed the faster regions with convolutional neural network (Faster R-CNN) structure for more accurate defect detection in such environments, achieving an average precision (intersection over union (IoU) = 0.5) of 62.7% for all types of trained defects. As it is difficult to detect defects in a training environment, it is necessary to improve the performance of the network. However, the object detection network employed in this study yields an excellent performance in complex real-world images, indicating the possibility of developing a system that would detect defects in more types of building façades.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 240 ◽  
Author(s):  
Gangcai Xie ◽  
Chengliang Dong ◽  
Yinfei Kong ◽  
Jiang Zhong ◽  
Mingyao Li ◽  
...  

Accurate prognosis of patients with cancer is important for the stratification of patients, the optimization of treatment strategies, and the design of clinical trials. Both clinical features and molecular data can be used for this purpose, for instance, to predict the survival of patients censored at specific time points. Multi-omics data, including genome-wide gene expression, methylation, protein expression, copy number alteration, and somatic mutation data, are becoming increasingly common in cancer studies. To harness the rich information in multi-omics data, we developed GDP (Group lass regularized Deep learning for cancer Prognosis), a computational tool for survival prediction using both clinical and multi-omics data. GDP integrated a deep learning framework and Cox proportional hazard model (CPH) together, and applied group lasso regularization to incorporate gene-level group prior knowledge into the model training process. We evaluated its performance in both simulated and real data from The Cancer Genome Atlas (TCGA) project. In simulated data, our results supported the importance of group prior information in the regularization of the model. Compared to the standard lasso regularization, we showed that group lasso achieved higher prediction accuracy when the group prior knowledge was provided. We also found that GDP performed better than CPH for complex survival data. Furthermore, analysis on real data demonstrated that GDP performed favorably against other methods in several cancers with large-scale omics data sets, such as glioblastoma multiforme, kidney renal clear cell carcinoma, and bladder urothelial carcinoma. In summary, we demonstrated that GDP is a powerful tool for prognosis of patients with cancer, especially when large-scale molecular features are available.


Author(s):  
Matin Hosseinzadeh ◽  
Anindo Saha ◽  
Patrick Brand ◽  
Ilse Slootweg ◽  
Maarten de Rooij ◽  
...  

Abstract Objectives To assess Prostate Imaging Reporting and Data System (PI-RADS)–trained deep learning (DL) algorithm performance and to investigate the effect of data size and prior knowledge on the detection of clinically significant prostate cancer (csPCa) in biopsy-naïve men with a suspicion of PCa. Methods Multi-institution data included 2734 consecutive biopsy-naïve men with elevated PSA levels (≥ 3 ng/mL) that underwent multi-parametric MRI (mpMRI). mpMRI exams were prospectively reported using PI-RADS v2 by expert radiologists. A DL framework was designed and trained on center 1 data (n = 1952) to predict PI-RADS ≥ 4 (n = 1092) lesions from bi-parametric MRI (bpMRI). Experiments included varying the number of cases and the use of automatic zonal segmentation as a DL prior. Independent center 2 cases (n = 296) that included pathology outcome (systematic and MRI targeted biopsy) were used to compute performance for radiologists and DL. The performance of detecting PI-RADS 4–5 and Gleason > 6 lesions was assessed on 782 unseen cases (486 center 1, 296 center 2) using free-response ROC (FROC) and ROC analysis. Results The DL sensitivity for detecting PI-RADS ≥ 4 lesions was 87% (193/223, 95% CI: 82–91) at an average of 1 false positive (FP) per patient, and an AUC of 0.88 (95% CI: 0.84–0.91). The DL sensitivity for the detection of Gleason > 6 lesions was 85% (79/93, 95% CI: 77–83) @ 1 FP compared to 91% (85/93, 95% CI: 84–96) @ 0.3 FP for a consensus panel of expert radiologists. Data size and prior zonal knowledge significantly affected performance (4%, $$p<0.05$$ p < 0.05 ). Conclusion PI-RADS-trained DL can accurately detect and localize Gleason > 6 lesions. DL could reach expert performance using substantially more than 2000 training cases, and DL zonal segmentation. Key Points • AI for prostate MRI analysis depends strongly on data size and prior zonal knowledge. • AI needs substantially more than 2000 training cases to achieve expert performance.


Author(s):  
Haoliang Jiang ◽  
Zhenguo Nie ◽  
Roselyn Yeo ◽  
Amir Barati Farimani ◽  
Levent Burak Kara

Abstract Using deep learning to analyze mechanical stress distributions has been gaining interest with the demand for fast stress analysis methods. Deep learning approaches have achieved excellent outcomes when utilized to speed up stress computation and learn the physics without prior knowledge of underlying equations. However, most studies restrict the variation of geometry or boundary conditions, making these methods difficult to be generalized to unseen configurations. We propose a conditional generative adversarial network (cGAN) model for predicting 2D von Mises stress distributions in solid structures. The cGAN learns to generate stress distributions conditioned by geometries, load, and boundary conditions through a two-player minimax game between two neural networks with no prior knowledge. By evaluating the generative network on two stress distribution datasets under multiple metrics, we demonstrate that our model can predict more accurate high-resolution stress distributions than a baseline convolutional neural network model, given various and complex cases of geometry, load and boundary conditions.


Author(s):  
A. M. Khalili ◽  
Abdel-Hamid Soliman ◽  
Md Asaduzzaman

People localization is a key building block in many applications. In this paper, we propose a deep learning based approach that significantly improves the localization accuracy and reduces the runtime of Wi-Fi based localization systems. Three variants of the deep learning approach are proposed, a sub-task architecture, an end-to-end architecture, and an architecture that incorporates prior knowledge. The performance of the three architectures under different conditions is evaluated and the significant improvement of the three architectures over existing approaches is demonstrated.


Author(s):  
A. M. Khalili ◽  
Abdel-Hamid Soliman ◽  
Md Asaduzzaman

People localization is a key building block in many applications. In this paper, we propose a deep learning based approach that significantly improves the localization accuracy and reduces the runtime of Wi-Fi based localization systems. Three variants of the deep learning approach are proposed, a sub-task architecture, an end-to-end architecture, and an architecture that incorporates prior knowledge. The performance of the three architectures under different conditions is evaluated and the significant improvement of the three architectures over existing approaches is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document