scholarly journals MultiDefectNet: Multi-Class Defect Detection of Building Façade Based on Deep Convolutional Neural Network

2020 ◽  
Vol 12 (22) ◽  
pp. 9785
Author(s):  
Kisu Lee ◽  
Goopyo Hong ◽  
Lee Sael ◽  
Sanghyo Lee ◽  
Ha Young Kim

Defects in residential building façades affect the structural integrity of buildings and degrade external appearances. Defects in a building façade are typically managed using manpower during maintenance. This approach is time-consuming, yields subjective results, and can lead to accidents or casualties. To address this, we propose a building façade monitoring system that utilizes an object detection method based on deep learning to efficiently manage defects by minimizing the involvement of manpower. The dataset used for training a deep-learning-based network contains actual residential building façade images. Various building designs in these raw images make it difficult to detect defects because of their various types and complex backgrounds. We employed the faster regions with convolutional neural network (Faster R-CNN) structure for more accurate defect detection in such environments, achieving an average precision (intersection over union (IoU) = 0.5) of 62.7% for all types of trained defects. As it is difficult to detect defects in a training environment, it is necessary to improve the performance of the network. However, the object detection network employed in this study yields an excellent performance in complex real-world images, indicating the possibility of developing a system that would detect defects in more types of building façades.

2020 ◽  
Vol 17 (8) ◽  
pp. 3478-3483
Author(s):  
V. Sravan Chowdary ◽  
G. Penchala Sai Teja ◽  
D. Mounesh ◽  
G. Manideep ◽  
C. T. Manimegalai

Road injuries are a big drawback in society for a few time currently. Ignoring sign boards while moving on roads has significantly become a major cause for road accidents. Thus we came up with an approach to face this issue by detecting the sign board and recognition of sign board. At this moment there are several deep learning models for object detection using totally different algorithms like RCNN, faster RCNN, SPP-net, etc. We prefer to use Yolo-3, which improves the speed and precision of object detection. This algorithm will increase the accuracy by utilizing residual units, skip connections and up-sampling. This algorithm uses a framework named Dark-net. This framework is intended specifically to create the neural network for training the Yolo algorithm. To thoroughly detect the sign board, we used this algorithm.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1678
Author(s):  
Yo-Ping Huang ◽  
Chun-Ming Su ◽  
Haobijam Basanta ◽  
Yau-Liang Tsai

The complexity of defect detection in a ceramic substrate causes interclass and intraclass imbalance problems. Identifying flaws in ceramic substrates has traditionally relied on aberrant material occurrences and characteristic quantities. However, defect substrates in ceramic are typically small and have a wide variety of defect distributions, thereby making defect detection more challenging and difficult. Thus, we propose a method for defect detection based on unsupervised learning and deep learning. First, the proposed method conducts K-means clustering for grouping instances according to their inherent complex characteristics. Second, the distribution of rarely occurring instances is balanced by using augmentation filters. Finally, a convolutional neural network is trained by using the balanced dataset. The effectiveness of the proposed method was validated by comparing the results with those of other methods. Experimental results show that the proposed method outperforms other methods.


2020 ◽  
Vol 28 (S2) ◽  
Author(s):  
Asmida Ismail ◽  
Siti Anom Ahmad ◽  
Azura Che Soh ◽  
Mohd Khair Hassan ◽  
Hazreen Haizi Harith

The object detection system is a computer technology related to image processing and computer vision that detects instances of semantic objects of a certain class in digital images and videos. The system consists of two main processes, which are classification and detection. Once an object instance has been classified and detected, it is possible to obtain further information, including recognizes the specific instance, track the object over an image sequence and extract further information about the object and the scene. This paper presented an analysis performance of deep learning object detector by combining a deep learning Convolutional Neural Network (CNN) for object classification and applies classic object detection algorithms to devise our own deep learning object detector. MiniVGGNet is an architecture network used to train an object classification, and the data used for this purpose was collected from specific indoor environment building. For object detection, sliding windows and image pyramids were used to localize and detect objects at different locations, and non-maxima suppression (NMS) was used to obtain the final bounding box to localize the object location. Based on the experiment result, the percentage of classification accuracy of the network is 80% to 90% and the time for the system to detect the object is less than 15sec/frame. Experimental results show that there are reasonable and efficient to combine classic object detection method with a deep learning classification approach. The performance of this method can work in some specific use cases and effectively solving the problem of the inaccurate classification and detection of typical features.


Author(s):  
Melchiezhedhieck J. Bongao ◽  
◽  
Arvin F. Almadin ◽  
Christian L. Falla ◽  
Juan Carlo F. Greganda ◽  
...  

This Raspberry Single-Board Computer-Based Object and Text Real-time Recognition Wearable Device using Convolutional Neural Network through TensorFlow Deep Learning, Python and C++ programming languages, and SQLite database application, which detect stationary objects, road signs and Philippine (PHP) money bills, and recognized texts through camera and translate it to audible outputs such as English and Filipino languages. Moreover, the system has a battery notification status using an Arduino microcontroller unit. It also has a switch for object detection mode, text recognition mode, and battery status report mode. This could fulfill the incapability of visually impaired in identifying of objects and the lack of reading ability as well as reducing the assistance that visually impaired needs. Descriptive quantitative research, Waterfall System Development Life Cycle and Evolutionary Prototyping Models were used as the methodologies of this study. Visually impaired persons and the Persons with Disability Affairs Office of the City Government of Biñan, Laguna, Philippines served as the main respondents of the survey conducted. Obtained results stipulated that the object detection, text recognition, and its attributes were accurate and reliable, which gives a significant distinction from the current system to detect objects and recognize printed texts for the visually impaired people.


Author(s):  
S Gopi Naik

Abstract: The plan is to establish an integrated system that can manage high-quality visual information and also detect weapons quickly and efficiently. It is obtained by integrating ARM-based computer vision and optimization algorithms with deep neural networks able to detect the presence of a threat. The whole system is connected to a Raspberry Pi module, which will capture live broadcasting and evaluate it using a deep convolutional neural network. Due to the intimate interaction between object identification and video and image analysis in real-time objects, By generating sophisticated ensembles that incorporate various low-level picture features with high-level information from object detection and scenario classifiers, their performance can quickly plateau. Deep learning models, which can learn semantic, high-level, deeper features, have been developed to overcome the issues that are present in optimization algorithms. It presents a review of deep learning based object detection frameworks that use Convolutional Neural Network layers for better understanding of object detection. The Mobile-Net SSD model behaves differently in network design, training methods, and optimization functions, among other things. The crime rate in suspicious areas has been reduced as a consequence of weapon detection. However, security is always a major concern in human life. The Raspberry Pi module, or computer vision, has been extensively used in the detection and monitoring of weapons. Due to the growing rate of human safety protection, privacy and the integration of live broadcasting systems which can detect and analyse images, suspicious areas are becoming indispensable in intelligence. This process uses a Mobile-Net SSD algorithm to achieve automatic weapons and object detection. Keywords: Computer Vision, Weapon and Object Detection, Raspberry Pi Camera, RTSP, SMTP, Mobile-Net SSD, CNN, Artificial Intelligence.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1033
Author(s):  
Qiaodi Wen ◽  
Ziqi Luo ◽  
Ruitao Chen ◽  
Yifan Yang ◽  
Guofa Li

By detecting the defect location in high-resolution insulator images collected by unmanned aerial vehicle (UAV) in various environments, the occurrence of power failure can be timely detected and the caused economic loss can be reduced. However, the accuracies of existing detection methods are greatly limited by the complex background interference and small target detection. To solve this problem, two deep learning methods based on Faster R-CNN (faster region-based convolutional neural network) are proposed in this paper, namely Exact R-CNN (exact region-based convolutional neural network) and CME-CNN (cascade the mask extraction and exact region-based convolutional neural network). Firstly, we proposed an Exact R-CNN based on a series of advanced techniques including FPN (feature pyramid network), cascade regression, and GIoU (generalized intersection over union). RoI Align (region of interest align) is introduced to replace RoI pooling (region of interest pooling) to address the misalignment problem, and the depthwise separable convolution and linear bottleneck are introduced to reduce the computational burden. Secondly, a new pipeline is innovatively proposed to improve the performance of insulator defect detection, namely CME-CNN. In our proposed CME-CNN, an insulator mask image is firstly generated to eliminate the complex background by using an encoder-decoder mask extraction network, and then the Exact R-CNN is used to detect the insulator defects. The experimental results show that our proposed method can effectively detect insulator defects, and its accuracy is better than the examined mainstream target detection algorithms.


In this paper a method of recognizing logos of the brand of cosmetic products using deep learning. There are several of hoax product which easily copies the famous brand’s logo and deteriorates the company’s image. The machine learning has proved to be useful in various of the fields like medical, object detection, vehicle logo recognitions. But till now very few of the works have been performed in cosmetic field. This field is covered using the model sequential convolutional neural network using Tensorflow and Keras. For the visual representation of the result Tensorboard is used. Work have been started with two of the brands-Lakme and L’Oreal. Depending upon the success of this technique, further brands for logo may be added for recognition. The accuracy of approximately 80% was obtained using this technique.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xieyi Chen ◽  
Dongyun Wang ◽  
Jinjun Shao ◽  
Jun Fan

To automatically detect plastic gasket defects, a set of plastic gasket defect visual detection devices based on GoogLeNet Inception-V2 transfer learning was designed and established in this study. The GoogLeNet Inception-V2 deep convolutional neural network (DCNN) was adopted to extract and classify the defect features of plastic gaskets to solve the problem of their numerous surface defects and difficulty in extracting and classifying the features. Deep learning applications require a large amount of training data to avoid model overfitting, but there are few datasets of plastic gasket defects. To address this issue, data augmentation was applied to our dataset. Finally, the performance of the three convolutional neural networks was comprehensively compared. The results showed that the GoogLeNet Inception-V2 transfer learning model had a better performance in less time. It means it had higher accuracy, reliability, and efficiency on the dataset used in this paper.


2021 ◽  
Author(s):  
Abhinav Sundar

The objective of this thesis was to evaluate the viability of implementation of an object recognition algorithm driven by deep learning for aerospace manufacturing, maintenance and assembly tasks. Comparison research has found that current computer vision methods such as, spatial mapping was limited to macro-object recognition because of its nodal wireframe analysis. An optical object recognition algorithm was trained to learn complex geometric and chromatic characteristics, therefore allowing for micro-object recognition, such as cables and other critical components. This thesis investigated the use of a convolutional neural network with object recognition algorithms. The viability of two categories of object recognition algorithms were analyzed: image prediction and object detection. Due to a viral epidemic, this thesis was limited in analytical consistency as resources were not readily available. The prediction-class algorithm was analyzed using a custom dataset comprised of 15 552 images of the MaxFlight V2002 Full Motion Simulator’s inverter system, and a model was created by transfer-learning that dataset onto the InceptionV3 convolutional neural network (CNN). The detection-class algorithm was analyzed using a custom dataset comprised of 100 images of two SUVs of different brand and style, and a model was created by transfer-learning that dataset onto the YOLOv3 deep learning architecture. The tests showed that the object recognition algorithms successfully identified the components with good accuracy, 99.97% mAP for prediction-class and 89.54% mAP. For detection-class. The accuracies and data collected with literature review found that object detection algorithms are accuracy, created for live -feed analysis and were suitable for the significant applications of AVI and aircraft assembly. In the future, a larger dataset needs to be complied to increase reliability and a custom convolutional neural network and deep learning algorithm needs to be developed specifically for aerospace assembly, maintenance and manufacturing applications.


Sign in / Sign up

Export Citation Format

Share Document