scholarly journals Monitoring the in vivo redox state of plant mitochondria: Effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge

2009 ◽  
Vol 1787 (5) ◽  
pp. 468-475 ◽  
Author(s):  
Markus Schwarzländer ◽  
Mark D. Fricker ◽  
Lee J. Sweetlove
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Walter H. Watson ◽  
Tom J. Burke ◽  
Igor N. Zelko ◽  
Edilson Torres-González ◽  
Jeffrey D. Ritzenthaler ◽  
...  

Aging is associated with progressive oxidation of plasma cysteine (Cys)/cystine (CySS) redox state, expressed asEhCySS. Cultured cells condition their media to reproduce physiologicalEhCySS, but it is unknown whether aged cells produce a more oxidized extracellular environment reflective of that seen in vivo. In the current study, we isolated primary lung fibroblasts from young and old female mice and measured the mediaEhCySSbefore and after challenge with Cys or CySS. We also measured expression of genes related to redox regulation and fibroblast function. These studies revealed that old fibroblasts produced a more oxidizing extracellularEhCySSthan young fibroblasts and that old fibroblasts had a decreased capacity to recover from an oxidative challenge due to a slower rate of reduction of CySS to Cys. These defects were associated with 10-fold lower expression of the Slc7a11 subunit of the xCT cystine-glutamate transporter. Extracellular superoxide dismutase (Sod3) was the only antioxidant or thiol-disulfide regulating enzyme among 36 examined that was downregulated in old fibroblasts by more than 2-fold, but there were numerous changes in extracellular matrix components. Thus, aging fibroblasts not only contribute to remodeling of the extracellular matrix but also have a profound effect on the extracellular redox environment.


Author(s):  
M.V. Derevyanchuk ◽  
◽  
O.I. Grabelnyh ◽  
R.P. Litvinovskaya ◽  
V.K. Voinikov ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 776
Author(s):  
Shipra Kumari ◽  
Bashistha Kumar Kanth ◽  
Ju young Ahn ◽  
Jong Hwa Kim ◽  
Geung-Joo Lee

Genome-wide transcriptome analysis using RNA-Seq of Lilium longiflorum revealed valuable genes responding to biotic stresses. WRKY transcription factors are regulatory proteins playing essential roles in defense processes under environmental stresses, causing considerable losses in flower quality and production. Thirty-eight WRKY genes were identified from the transcriptomic profile from lily genotypes, exhibiting leaf blight caused by Botrytis elliptica. Lily WRKYs have a highly conserved motif, WRKYGQK, with a common variant, WRKYGKK. Phylogeny of LlWRKYs with homologous genes from other representative plant species classified them into three groups- I, II, and III consisting of seven, 22, and nine genes, respectively. Base on functional annotation, 22 LlWRKY genes were associated with biotic stress, nine with abiotic stress, and seven with others. Sixteen unique LlWRKY were studied to investigate responses to stress conditions using gene expression under biotic and abiotic stress treatments. Five genes—LlWRKY3, LlWRKY4, LlWRKY5, LlWRKY10, and LlWRKY12—were substantially upregulated, proving to be biotic stress-responsive genes in vivo and in vitro conditions. Moreover, the expression patterns of LlWRKY genes varied in response to drought, heat, cold, and different developmental stages or tissues. Overall, our study provides structural and molecular insights into LlWRKY genes for use in the genetic engineering in Lilium against Botrytis disease.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


2003 ◽  
Vol 23 (11) ◽  
pp. 4000-4012 ◽  
Author(s):  
Ludovic Delage ◽  
André Dietrich ◽  
Anne Cosset ◽  
Laurence Maréchal-Drouard

ABSTRACT Some of the mitochondrial tRNAs of higher plants are nuclearly encoded and imported into mitochondria. The import of tRNAs encoded in the nucleus has been shown to be essential for proper protein translation within mitochondria of a variety of organisms. Here, we report the development of an in vitro assay for import of nuclearly encoded tRNAs into plant mitochondria. This in vitro system utilizes isolated mitochondria from Solanum tuberosum and synthetic tRNAs transcribed from cloned nuclear tRNA genes. Although incubation of radioactively labeled in vitro-transcribed tRNAAla, tRNAPhe, and tRNAMet-e with isolated potato mitochondria resulted in importation, as measured by nuclease protection, the amount of tRNA transcripts protected at saturation was at least five times higher for tRNAAla than for the two other tRNAs. This difference in in vitro saturation levels of import is consistent with the in vivo localization of these tRNAs, since cytosolic tRNAAla is naturally imported into potato mitochondria whereas tRNAPhe and tRNAMet-e are not. Characterization of in vitro tRNA import requirements indicates that mitochondrial tRNA import proceeds in the absence of any added cytosolic protein fraction, involves at least one protein component on the surface of mitochondria, and requires ATP-dependent step(s) and a membrane potential.


Author(s):  
Wei Wang ◽  
Chenlu Wang ◽  
Guoming Liu ◽  
Long Jin ◽  
Zexi Lin ◽  
...  

1991 ◽  
Vol 11 (4) ◽  
pp. 2035-2039
Author(s):  
P J Hanic-Joyce ◽  
M W Gray

To investigate transcriptional mechanisms in plant mitochondria, we have developed an accurate and efficient in vitro transcription system consisting of a partially purified wheat mitochondrial extract programmed with cloned DNA templates containing the promoter for the wheat mitochondrial cytochrome oxidase subunit II gene (coxII). Using this system, we localize the coxII promoter to a 372-bp region spanning positions -56 to -427 relative to the coxII translation initiation codon. We show that in vitro transcription of coxII is initiated at position -170, precisely the same site at which transcription is initiated in vivo. Transcription begins within the sequence GTATAGTAAGTA (the initiating nucleotide is underlined), which is similar to the consensus yeast mitochondrial promoter motif, (A/T)TATAAGTA. This is the first in vitro system that faithfully reproduces in vivo transcription of a plant mitochondrial gene.


2019 ◽  
Vol 84 (7) ◽  
pp. 817-828 ◽  
Author(s):  
T. A. Tarasenko ◽  
V. I. Tarasenko ◽  
M. V. Koulintchenko ◽  
E. S. Klimenko ◽  
Yu. M. Konstantinov

2017 ◽  
Vol 108 ◽  
pp. S38
Author(s):  
Alexander Martin Wolf ◽  
Shigeo Ohta

2021 ◽  
Author(s):  
Zechariah Haber ◽  
Nardy Lampl ◽  
Andreas J Meyer ◽  
Einat Zelinger ◽  
Matanel Hipsch ◽  
...  

Abstract Plants are subjected to fluctuations in light intensity, and this causes unbalanced photosynthetic electron fluxes and overproduction of reactive oxygen species (ROS). Electrons needed for ROS detoxification are drawn, at least partially, from the cellular glutathione (GSH) pool via the ascorbate-glutathione cycle. Here, we explore the dynamics of the chloroplastic glutathione redox potential (chl-EGSH) using high-temporal-resolution monitoring of Arabidopsis (Arabidopsis thaliana) lines expressing the reduction-oxidation sensitive green fluorescent protein 2 (roGFP2in chloroplasts. This was carried out over several days, under dynamic environmental conditions and in correlation with PSII operating efficiency. Peaks in chl-EGSH oxidation during dark-to-light and light-to-dark transitions were observed. Increasing light intensities triggered a binary oxidation response, with a threshold around the light saturating point, suggesting two regulated oxidative states of the chl-EGSH. These patterns were not affected in npq1 plants, which are impaired in nonphotochemical quenching. Oscillations between the two oxidation states were observed under fluctuating light in WT and npq1 plants, but not in pgr5 plants, suggesting a role for PSI photoinhibition in regulating the chl-EGSH dynamics. Remarkably, pgr5 plants showed an increase in chl-EGSH oxidation during the nights following light stresses, linking daytime photoinhibition and nighttime GSH metabolism. This work provides a systematic view of the dynamics of the in vivo chloroplastic glutathione redox state during varying light conditions.


Sign in / Sign up

Export Citation Format

Share Document