In‐Vivo Two‐Photon Visualization and Quantitative Detection of Redox State of Cancer

Author(s):  
Wei Wang ◽  
Chenlu Wang ◽  
Guoming Liu ◽  
Long Jin ◽  
Zexi Lin ◽  
...  
2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


2021 ◽  
Author(s):  
Li Li ◽  
Zheng Lv ◽  
Zhongwei Man ◽  
Zhenzhen Xu ◽  
YuLing Wei ◽  
...  

Amyloid fibrils are associated with many neurodegenerative diseases. In-situ and in-vivo visualization of amyloid fibrils is important for medical diagnostic and requires fluorescent probes with both excitation and emission wavelengths in...


2012 ◽  
Vol 278 (1-2) ◽  
pp. 158-165 ◽  
Author(s):  
Tamás Kobezda ◽  
Sheida Ghassemi-Nejad ◽  
Tibor T. Glant ◽  
Katalin Mikecz

2012 ◽  
Vol 2012 (12) ◽  
pp. pdb.prot072264-pdb.prot072264 ◽  
Author(s):  
H. Steffens ◽  
F. Nadrigny ◽  
F. Kirchhoff

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Livia Asan ◽  
Claudia Falfán-Melgoza ◽  
Carlo A. Beretta ◽  
Markus Sack ◽  
Lei Zheng ◽  
...  

AbstractMagnetic resonance imaging (MRI) of the brain combined with voxel-based morphometry (VBM) revealed changes in gray matter volume (GMV) in various disorders. However, the cellular basis of GMV changes has remained largely unclear. We correlated changes in GMV with cellular metrics by imaging mice with MRI and two-photon in vivo microscopy at three time points within 12 weeks, taking advantage of age-dependent changes in brain structure. Imaging fluorescent cell nuclei allowed inferences on (i) physical tissue volume as determined from reference spaces outlined by nuclei, (ii) cell density, (iii) the extent of cell clustering, and (iv) the volume of cell nuclei. Our data indicate that physical tissue volume alterations only account for 13.0% of the variance in GMV change. However, when including comprehensive measurements of nucleus volume and cell density, 35.6% of the GMV variance could be explained, highlighting the influence of distinct cellular mechanisms on VBM results.


2016 ◽  
Vol 5 (1) ◽  
pp. e16007-e16007 ◽  
Author(s):  
Adi Schejter Bar-Noam ◽  
Nairouz Farah ◽  
Shy Shoham
Keyword(s):  

2015 ◽  
Vol 35 (31) ◽  
pp. 10927-10939 ◽  
Author(s):  
O. Barnstedt ◽  
P. Keating ◽  
Y. Weissenberger ◽  
A. J. King ◽  
J. C. Dahmen

2017 ◽  
Vol 223 (1) ◽  
pp. 519-533 ◽  
Author(s):  
Jiangheng Guan ◽  
Jingcheng Li ◽  
Shanshan Liang ◽  
Ruijie Li ◽  
Xingyi Li ◽  
...  

2010 ◽  
Vol 299 (1) ◽  
pp. G255-G264 ◽  
Author(s):  
Elise S. Demitrack ◽  
Manoocher Soleimani ◽  
Marshall H. Montrose

Gastric surface pH (pHo) transiently increases in response to focal epithelial damage. The sources of that increase, either from paracellular leakage of interstitial fluid or transcellular acid/base fluxes, have not been determined. Using in vivo microscopy approaches we measured pHowith Cl-NERF, tissue permeability with intravenous fluorescent-dextrans to label interstitial fluid (paracellular leakage), and gastric epithelial intracellular pH (pHi) with SNARF-5F (cellular acid/base fluxes). In response to two-photon photodamage, we found that cell-impermeant dyes entered damaged cells from luminal or tissue compartments, suggesting a possible slow transcellular, but not paracellular, route for increased permeability after damage. Regarding cytosolic acid/base status, we found that damaged cells acidified (6.63 ± 0.03) after photodamage, compared with healthy surface cells both near (7.12 ± 0.06) and far (7.07 ± 0.04) from damage ( P < 0.05). This damaged cell acidification was further attenuated with 20 μM intravenous EIPA (6.34 ± 0.05, P < 0.05) but unchanged by addition of 0.5 mM luminal H2DIDS (6.64 ± 0.08, P > 0.05). Raising luminal pH did not realkalinize damaged cells, suggesting that the mechanism of acidification is not attributable to leakiness to luminal protons. Inhibition of apical HCO3−secretion with 0.5 mM luminal H2DIDS or genetic deletion of the solute-like carrier 26A9 (SLC26A9) Cl−/HCO3−exchanger blocked the pHoincrease normally observed in control animals but did not compromise repair of damaged tissue. Addition of exogenous PGE2significantly increased pHoin wild-type, but not SLC26A9 knockout, animals, suggesting that prostaglandin-stimulated HCO3−secretion is fully mediated by SLC26A9. We conclude that cellular HCO3−secretion, likely through SLC26A9, is the dominant mechanism whereby surface pH transiently increases in response to photodamage.


Sign in / Sign up

Export Citation Format

Share Document