scholarly journals Can β-carotene regulate cell growth by a redox mechanism? An answer from cultured cells

Author(s):  
Paola Palozza
Mutagenesis ◽  
2019 ◽  
Author(s):  
Masahiko Watanabe ◽  
Masae Toudou ◽  
Taeko Uchida ◽  
Misato Yoshikawa ◽  
Hiroaki Aso ◽  
...  

Abstract Mutations in oncogenes or tumour suppressor genes cause increases in cell growth capacity. In some cases, fully malignant cancer cells develop after additional mutations occur in initially mutated cells. In such instances, the risk of cancer would increase in response to growth of these initially mutated cells. To ascertain whether such a situation might occur in cultured cells, three independent cultures of human lymphoblastoid GM00130 cells were treated with N-ethyl-N-nitrosourea to induce mutations, and the cells were maintained for 12 weeks. Mutant frequencies and spectra of the cells at the MspI and HaeIII restriction sites located at codons 247–250 of the TP53 gene were examined. Mutant frequencies at both sites in the gene exhibited a declining trend during cell culture and reached background levels after 12 weeks; this was also supported by mutation spectra findings. These results indicate that the mutations detected under our assay conditions are disadvantageous to cell growth.


2008 ◽  
Vol 102 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Paola Palozza ◽  
Diana Bellovino ◽  
Rossella Simone ◽  
Alma Boninsegna ◽  
Francesco Cellini ◽  
...  

Lycopene β-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of β-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced β-carotene release and therefore cell growth inhibition. To induce with purified β-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that β-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with β-carotene in promoting cell growth arrest.


2003 ◽  
Vol 24 (6) ◽  
pp. 353-362 ◽  
Author(s):  
Paola Palozza ◽  
Simona Serini ◽  
Fiorella Di Nicuolo ◽  
Elisabetta Piccioni ◽  
Gabriella Calviello
Keyword(s):  

Antioxidants ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 157 ◽  
Author(s):  
Joao Fonseca ◽  
Fereshteh Moradi ◽  
Andrew Valente ◽  
Jeffrey Stuart

Resveratrol is a plant-derived polyphenol that has been widely studied for its putative health promoting effects. Many of those studies have been conducted in cell culture, in supra-physiological levels of oxygen and glucose. Resveratrol interacts with reactive oxygen species (ROS) as an antioxidant or pro-oxidant. Resveratrol affects the expression and activities of ROS-producing enzymes and organelles. It is therefore important to consider how cell culture conditions might determine the effects of resveratrol on cultured cells. We determined the effects of resveratrol on cell growth, hydrogen peroxide production, and mitochondrial network characteristics in C2C12 mouse myoblasts and PC3 human prostate cancer cells under conditions of physiological (5%) and supra-physiological (18%) oxygen, and normo- (5 mM) and hyper-glycemia (25 mM). Interestingly, most effects of resveratrol on the parameters measured here were dependent upon prevailing oxygen and glucose levels during the experiment. Many of the effects of resveratrol on cell growth, hydrogen peroxide production, and mitochondrial network characteristics that were seen in 25 mM glucose and/or 18% oxygen were absent under the physiologically relevant conditions of 5 mM glucose with 5% oxygen. These findings emphasize the importance of using physiologically meaningful starting conditions for cell-culture experiments with resveratrol and indeed any manipulation affecting ROS metabolism and mitochondria.


2021 ◽  
Vol 6 (1) ◽  
pp. 31-40
Author(s):  
Yustiny Andaliza Hasibuan ◽  
Diah Ratnadewi ◽  
Zainal Alim Mas’ud

Cinchona alkaloids are known as antimalaria and anti-arrhythmic. Due to the long waiting time to harvest, cell culture technology is a challenge. This study aimed to determine the effects of elicitors, filtrate of two strains of endophytic fungi and methyl jasmonate (MeJA), in cell suspension culture of Cinchona ledgeriana on quinine and quinidine production. The cells were cultured for seven weeks in woody plant (WP) media treated with either of those elicitors in various concentrations. The cells growth was observed and the alkaloids were analyzed by HPLC. Cells treated with MeJA failed to grow that led to the cell biomass insufficiency for alkaloids determination.  It indicates that the cells are quite sensitive to even low concentration of MeJA that hampered the growth. Cells treated with the filtrate of Diaporthe sp. M13-Millipore filtered (S2M) gave the least cell biomass but presented the highest content of both alkaloids. Diaporthe sp. strain M-13 is stronger as elicitor than M-23 for this plant species. Filtrate of non-virulent fungi can elevate the biosynthesis of alkaloids. This reconfirms that cultured cells are capable to produce secondary metabolites and the productivity can be increased by using an appropriate elicitor.  


2010 ◽  
Vol 433 (2) ◽  
pp. e1-e2 ◽  
Author(s):  
Zachary A. Knight

More than 20 protein kinases are directly activated by 3-phosphoinositide-dependent kinase 1 (PDK1), which is a central component of the pathways that regulate cell growth, proliferation and survival. Despite the importance of PDK1 in cell signalling, highly selective PDK1 inhibitors have not been described. In this issue of the Biochemical Journal, Dario Alessi's group and their collaborators at GlaxoSmithKline report GSK2334470, a potent and selective PDK1 inhibitor. They show that this compound blocks the phosphorylation of known PDK1 substrates, but surprisingly find that the potency and kinetics of inhibition vary for different PDK1 targets. This substrate-specific inhibition has implications for the development of PDK1 inhibitors as drugs.


Author(s):  
Yukihiro Akao ◽  
Kenji Matsumoto ◽  
Kenji Ohguchi ◽  
Yoshihito Nakagawa ◽  
Hitoshi Yoshida

Sign in / Sign up

Export Citation Format

Share Document