Small non-coding RNA within the endogenous spliceosome and alternative splicing regulation

2019 ◽  
Vol 1862 (11-12) ◽  
pp. 194406 ◽  
Author(s):  
Ruth Sperling
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shuang Qu ◽  
Zichen Jiao ◽  
Geng Lu ◽  
Bing Yao ◽  
Ting Wang ◽  
...  

Abstract Background Although using a blockade of programmed death-ligand 1 (PD-L1) to enhance T cell immune responses shows great promise in tumor immunotherapy, the immune-checkpoint inhibition strategy is limited for patients with solid tumors. The mechanism and efficacy of such immune-checkpoint inhibition strategies in solid tumors remains unclear. Results Employing qRT-PCR, Sanger sequencing, and RNA BaseScope analysis, we show that human lung adenocarcinoma (LUAD) all produce a long non-coding RNA isoform of PD-L1 (PD-L1-lnc) by alternative splicing, regardless if the tumor is positive or negative for the protein PD-L1. Similar to PD-L1 mRNA, PD-L1-lnc in various lung adenocarcinoma cells is significantly upregulated by IFNγ. Both in vitro and in vivo studies demonstrate that PD-L1-lnc increases proliferation and invasion but decreases apoptosis of lung adenocarcinoma cells. Mechanistically, PD-L1-lnc promotes lung adenocarcinoma progression through directly binding to c-Myc and enhancing c-Myc transcriptional activity. Conclusions In summary, the PD-L1 gene can generate a long non-coding RNA through alternative splicing to promote lung adenocarcinoma progression by enhancing c-Myc activity. Our results argue in favor of investigating PD-L1-lnc depletion in combination with PD-L1 blockade in lung cancer therapy.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiangchun Pan ◽  
Wentao Gong ◽  
Yingting He ◽  
Nian Li ◽  
Hao Zhang ◽  
...  

Abstract Background In mammals, the ovary is the essential system of female reproduction for the onset of puberty, and the abnormal puberty has negative outcomes on health. CircRNA is a non-coding RNA produced by non-canonical alternative splicing (AS). Several studies have reported that circRNA is involved in the gene regulation and plays an important role in some human diseases. However, the contribution of circRNA has received little known within the onset of puberty in ovary. Results Here, the profiles of ovarian circRNAs across pre-, in- and post-pubertal stages were established by RNA-sEq. In total, 972 circRNAs were identified, including 631 stage-specific circRNAs and 8 tissue-specific circRNAs. The biological functions of parental genes of circRNAs were enriched in steroid biosynthesis, autophagy-animal, MAPK signaling pathway, progesterone-mediated oocyte maturation and ras signaling pathway. Moreover, 5 circRNAs derived from 4 puberty-related genes (ESR1, JAK2, NF1 and ARNT) were found in this study. The A3SS events were the most alternative splicing, but IR events were likely to be arose in post-pubertal ovaries. Besides, the circRNA-miRNA-gene networks were explored for 10 differentially expressed circRNAs. Furthermore, the head-to-tail exon as well as the expressions of 10 circRNAs were validated by the divergent RT-qPCR and sanger sequencing. Conclusions In summary, the profiles of ovarian circRNAs were provided during pubertal transition in gilts, and these results provided useful information for the investigation on the onset of puberty at the ovarian-circRNAs-level in mammals.


2003 ◽  
Vol 23 (13) ◽  
pp. 4687-4700 ◽  
Author(s):  
B. Kate Dredge ◽  
Robert B. Darnell

ABSTRACT Nova is a neuron-specific RNA binding protein targeted in patients with the autoimmune disorder paraneoplastic opsoclonus-myoclonus ataxia, which is characterized by failure of inhibition of brainstem and spinal motor systems. Here, we have biochemically confirmed the observation that splicing regulation of the inhibitory GABAA receptor γ2 (GABAARγ2) subunit pre-mRNA exon E9 is disrupted in mice lacking Nova-1. To elucidate the mechanism by which Nova-1 regulates GABAARγ2 alternative splicing, we systematically screened minigenes derived from the GABAARγ2 and human β-globin genes for their ability to support Nova-dependent splicing in transient transfection assays. These studies demonstrate that Nova-1 acts directly on GABAARγ2 pre-mRNA to regulate E9 splicing and identify an intronic region that is necessary and sufficient for Nova-dependent enhancement of exon inclusion, which we term the NISE (Nova-dependent intronic splicing enhancer) element. The NISE element (located 80 nucleotides upstream of the splice acceptor site of the downstream exon E10) is composed of repeats of the sequence YCAY, consistent with previous studies of the mechanism by which Nova binds RNA. Mutation of these repeats abolishes binding of Nova-1 to the RNA in vitro and Nova-dependent splicing regulation in vivo. These data provide a molecular basis for understanding Nova regulation of GABAARγ2 alternative splicing and suggest that general dysregulation of Nova's splicing enhancer function may underlie the neurologic defects seen in Nova's absence.


2016 ◽  
Vol 62 (5) ◽  
pp. 544-554 ◽  
Author(s):  
D.D. Zhdanov ◽  
D.A. Vasina ◽  
E.V. Orlova ◽  
V.S. Orlova ◽  
M.V. Pokrovskaya ◽  
...  

Human telomerase catalytic subunit hTERT is subjected to alternative splicing results in loss of its function and leads to decrease of telomerase activity. However, very little is known about the mechanism of hTERT pre-mRNA alternative splicing. Apoptotic endonuclease EndoG is known to participate this process. The aim of this study was to determine the role of EndoG in regulation of hTERT alternative splicing. Increased expression of b-deletion splice variant was determined during EndoG over-expression in CaCo-2 cell line, after EndoG treatment of cell cytoplasm and nuclei and after nuclei incubation with EndoG digested cell RNA. hTERT alternative splicing was induced by 47-mer RNA oligonucleotide in naked nuclei and in cells after transfection. Identified long non-coding RNA, that is the precursor of 47-mer RNA oligonucleotide. Its size is 1754 nucleotides. Based on the results the following mechanism was proposed. hTERT pre-mRNA is transcribed from coding DNA strand while long non-coding RNA is transcribed from template strand of hTERT gene. EndoG digests long non-coding RNA and produces 47-mer RNA oligonucleotide complementary to hTERT pre-mRNA exon 8 and intron 8 junction place. Interaction of 47-mer RNA oligonucleotide and hTERT pre-mRNA causes alternative splicing.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 666 ◽  
Author(s):  
Andrew T. Ludlow ◽  
Aaron L. Slusher ◽  
Mohammed E. Sayed

The reactivation of telomerase in cancer cells remains incompletely understood. The catalytic component of telomerase, hTERT, is thought to be the limiting component in cancer cells for the formation of active enzymes. hTERT gene expression is regulated at several levels including chromatin, DNA methylation, transcription factors, and RNA processing events. Of these regulatory events, RNA processing has received little attention until recently. RNA processing and alternative splicing regulation have been explored to understand how hTERT is regulated in cancer cells. The cis- and trans-acting factors that regulate the alternative splicing choice of hTERT in the reverse transcriptase domain have been investigated. Further, it was discovered that the splicing factors that promote the production of full-length hTERT were also involved in cancer cell growth and survival. The goals are to review telomerase regulation via alternative splicing and the function of hTERT splicing variants and to point out how bioinformatics approaches are leading the way in elucidating the networks that regulate hTERT splicing choice and ultimately cancer growth.


Sign in / Sign up

Export Citation Format

Share Document