Hyperbaric hyperoxia alters innate immune functional properties during NASA Extreme Environment Mission Operation (NEEMO)

2015 ◽  
Vol 50 ◽  
pp. 52-57 ◽  
Author(s):  
C. Strewe ◽  
B.E. Crucian ◽  
C.F. Sams ◽  
B. Feuerecker ◽  
R.P. Stowe ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Andrew P. Koutnik ◽  
Michelle E. Favre ◽  
Karina Noboa ◽  
Marcos A. Sanchez-Gonzalez ◽  
Sara E. Moss ◽  
...  

Human adaptation to extreme environments has been explored for over a century to understand human psychology, integrated physiology, comparative pathologies, and exploratory potential. It has been demonstrated that these environments can provide multiple external stimuli and stressors, which are sufficient to disrupt internal homeostasis and induce adaptation processes. Multiday hyperbaric and/or saturated (HBS) environments represent the most understudied of environmental extremes due to inherent experimental, analytical, technical, temporal, and safety limitations. National Aeronautic Space Agency (NASA) Extreme Environment Mission Operation (NEEMO) is a space-flight analog mission conducted within Florida International University’s Aquarius Undersea Research Laboratory (AURL), the only existing operational and habitable undersea saturated environment. To investigate human objective and subjective adaptations to multiday HBS, we evaluated aquanauts living at saturation for 9–10 days via NASA NEEMO 22 and 23, across psychologic, cardiac, respiratory, autonomic, thermic, hemodynamic, sleep, and body composition parameters. We found that aquanauts exposed to saturation over 9–10 days experienced intrapersonal physical and mental burden, sustained good mood and work satisfaction, decreased heart and respiratory rates, increased parasympathetic and reduced sympathetic modulation, lower cerebral blood flow velocity, intact cerebral autoregulation and maintenance of baroreflex functionality, as well as losses in systemic bodyweight and adipose tissue. Together, these findings illustrate novel insights into human adaptation across multiple body systems in response to multiday hyperbaric saturation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rocío Martínez-Aguilar ◽  
Salvador Romero-Pinedo ◽  
M. José Ruiz-Magaña ◽  
Enrique G. Olivares ◽  
Carmen Ruiz-Ruiz ◽  
...  

AbstractMenstrual blood-derived stromal cells (MenSCs) are emerging as a strong candidate for cell-based therapies due to their immunomodulatory properties. However, their direct impact on innate immune populations remains elusive. Since macrophages play a key role in the onset and development of inflammation, understanding MenSCs implication in the functional properties of these cells is required to refine their clinical effects during the treatment of inflammatory disorders. In this study, we assessed the effects that MenSCs had on the recruitment of macrophages and other innate immune cells in two mouse models of acute inflammation, a thioglycollate (TGC)-elicited peritonitis model and a monobacterial sepsis model. We found that, in the TGC model, MenSCs injection reduced the percentage of macrophages recruited to the peritoneum and promoted the generation of peritoneal immune cell aggregates. In the sepsis model, MenSCs exacerbated infection by diminishing the recruitment of macrophages and neutrophils to the site of infection and inducing defective bacterial clearance. Additional in vitro studies confirmed that co-culture with MenSCs impaired macrophage bactericidal properties, affecting bacterial killing and the production of reactive oxygen intermediates. Our findings suggest that MenSCs modulate the macrophage population and that this modulation must be taken into consideration when it comes to future clinical applications.


2021 ◽  
Vol 22 (3) ◽  
pp. 1091
Author(s):  
Bianca Brawek ◽  
Maryna Skok ◽  
Olga Garaschuk

Microglia, the innate immune cells of the brain, are commonly perceived as resident macrophages of the central nervous system (CNS). This definition, however, requires further specification, as under healthy homeostatic conditions, neither morphological nor functional properties of microglia mirror those of classical macrophages. Indeed, microglia adapt exceptionally well to their microenvironment, becoming a legitimate member of the cellular brain architecture. The ramified or surveillant microglia in the young adult brain are characterized by specific morphology (small cell body and long, thin motile processes) and physiology (a unique pattern of Ca2+ signaling, responsiveness to various neurotransmitters and hormones, in addition to classic “immune” stimuli). Their numerous physiological functions far exceed and complement their immune capabilities. As the brain ages, the respective changes in the microglial microenvironment impact the functional properties of microglia, triggering further rounds of adaptation. In this review, we discuss the recent data showing how functional properties of microglia adapt to age-related changes in brain parenchyma in a sex-specific manner, with a specific focus on early changes occurring at middle age as well as some strategies counteracting the aging of microglia.


Author(s):  
T. Wichertjes ◽  
E.J. Kwak ◽  
E.F.J. Van Bruggen

Hemocyanin of the horseshoe crab (Limulus polyphemus) has been studied in nany ways. Recently the structure, dissociation and reassembly was studied using electron microscopy of negatively stained specimens as the method of investigation. Crystallization of the protein proved to be possible and X-ray crystallographic analysis was started. Also fluorescence properties of the hemocyanin after dialysis against Tris-glycine buffer + 0.01 M EDTA pH 8.9 (so called “stripped” hemocyanin) and its fractions II and V were studied, as well as functional properties of the fractions by NMR. Finally the temperature-jump method was used for assaying the oxygen binding of the dissociating molecule and of preparations of isolated subunits. Nevertheless very little is known about the structure of the intact molecule. Schutter et al. suggested that the molecule possibly consists of two halves, combined in a staggered way, the halves themselves consisting of four subunits arranged in a square.


2001 ◽  
Vol 268 (6) ◽  
pp. 1739-1748
Author(s):  
Aitor Hierro ◽  
Jesus M. Arizmendi ◽  
Javier De Las Rivas ◽  
M. Angeles Urbaneja ◽  
Adelina Prado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document