Abstract #4315 Severity of psychomotor retardation in depressed patients is associated with mRNA enrichment of toll-like receptor, cytokine and mTOR signaling pathways

2019 ◽  
Vol 81 ◽  
pp. 29
Author(s):  
M. Bekhbat ◽  
D.R. Goldsmith ◽  
A.H. Miller ◽  
J.C. Felger
2021 ◽  
pp. 1-7
Author(s):  
Anna Sandmeir ◽  
Désirée Schoenherr ◽  
Uwe Altmann ◽  
Christoph Nikendei ◽  
Henning Schauenburg ◽  
...  

Psychomotor retardation is a well-known clinical phenomenon in depressed patients that can be measured in various ways. This study aimed to investigate objectively measured gross body movement (GBM) during a semi-structured clinical interview in patients with a depressive disorder and its relation with depression severity. A total of 41 patients with a diagnosis of depressive disorder were assessed both with a clinician-rated interview (Hamilton Depression Rating Scale) and a self-rating questionnaire (Beck Depression Inventory-II) for depression severity. Motion energy analysis (MEA) was applied on videos of additional semi-structured clinical interviews. We considered (partial) correlations between patients’ GBM and depression scales. There was a significant, moderate negative correlation between both measures for depression severity (total scores) and GBM during the diagnostic interview. However, there was no significant correlation between the respective items assessing motor symptoms in the clinician-rated and the patient-rated depression severity scale and GBM. Findings imply that neither clinician ratings nor self-ratings of psychomotor symptoms in depressed patients are correlated with objectively measured GBM. MEA thus offers a unique insight into the embodied symptoms of depression that are not available via patients’ self-ratings or clinician ratings.


PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e31341 ◽  
Author(s):  
Guilhem Richard ◽  
Calin Belta ◽  
A. Agung Julius ◽  
Salomon Amar

2014 ◽  
Vol 50 (3) ◽  
pp. 797-810 ◽  
Author(s):  
Fatemeh Hemmati ◽  
Rasoul Ghasemi ◽  
Norlinah Mohamed Ibrahim ◽  
Leila Dargahi ◽  
Zahurin Mohamed ◽  
...  

2005 ◽  
Vol 73 (5) ◽  
pp. 2940-2950 ◽  
Author(s):  
Susu M. Zughaier ◽  
Shanta M. Zimmer ◽  
Anup Datta ◽  
Russell W. Carlson ◽  
David S. Stephens

ABSTRACT The biological response to endotoxin mediated through the Toll-like receptor 4 (TLR4)-MD-2 receptor complex is directly related to lipid A structure or configuration. Endotoxin structure may also influence activation of the MyD88-dependent and -independent signaling pathways of TLR4. To address this possibility, human macrophage-like cell lines (THP-1, U937, and MM6) or murine macrophage RAW 264.7 cells were stimulated with picomolar concentrations of highly purified endotoxins. Harvested supernatants from previously stimulated cells were also used to stimulate RAW 264.7 or 23ScCr (TLR4-deficient) macrophages (i.e., indirect induction). Neisseria meningitidis lipooligosaccharide (LOS) was a potent direct inducer of the MyD88-dependent pathway molecules tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 3α (MIP-3α), and the MyD88-independent molecules beta interferon (IFN-β), nitric oxide, and IFN-γ-inducible protein 10 (IP-10). Escherichia coli 55:B5 and Vibrio cholerae lipopolysaccharides (LPSs) at the same pmole/ml lipid A concentrations induced comparable levels of TNF-α, IL-1β, and MIP-3α, but significantly less IFN-β, nitric oxide, and IP-10. In contrast, LPS from Salmonella enterica serovars Minnesota and Typhimurium induced amounts of IFN-β, nitric oxide, and IP-10 similar to meningococcal LOS but much less TNF-α and MIP-3α in time course and dose-response experiments. No MyD88-dependent or -independent response to endotoxin was seen in TLR4-deficient cell lines (C3H/HeJ and 23ScCr) and response was restored in TLR4-MD-2-transfected human embryonic kidney 293 cells. Blocking the MyD88-dependent pathway by DNMyD88 resulted in significant reduction of TNF-α release but did not influence nitric oxide release. IFN-β polyclonal antibody and IFN-α/β receptor 1 antibody significantly reduced nitric oxide release. N. meningitidis endotoxin was a potent agonist of both the MyD88-dependent and -independent signaling pathways of the TLR4 receptor complex of human macrophages. E. coli 55:B5 and Vibrio cholerae LPS, at the same picomolar lipid A concentrations, selectively induced the MyD88-dependent pathway, while Salmonella LPS activated the MyD88-independent pathway.


2021 ◽  
Author(s):  
Jiabin Zhao ◽  
Binjiahui Zhao ◽  
Limin Hou

Abstract Background: The study aimed to examine the molecular mechanism and clinical significance of A-kinase interacting protein 1 (AKIP1) in prostate cancer. Methods: The effect of AKIP1 on cell proliferation, migration, invasion, apoptosis and stemness was determined by overexpressing and knocking down AKIP1 in LNCaP and 22Rv1 cells via lentivirus infection. Furthermore, differentially expressed genes (DEGs) by AKIP1 modification were determined using RNA sequencing. Besides, the correlation of AKIP1 with clinicopathological features and prognosis in 130 prostate cancer patients was assessed. Results: AKIP1 expression was increased in VCaP, LNCaP, DU145 cells while similar in 22Rv1 cells compared with RWPE-1 cells. Furthermore, AKIP1 overexpression promoted 22Rv1 and LNCaP cell proliferation, invasion, but inhibited apoptosis; meanwhile, AKIP1 overexpression increased CD133+ cell rate and enhanced spheres formation efficiency in 22Rv1 and LNCaP cells. Reversely, AKIP1 knockdown exhibited the opposite effect in 22Rv1 and LNCaP cells. Further RNA sequencing analysis exhibited that AKIP1-modified DEGs were enriched in the oncogenic signaling pathways related to prostate cancer, such as PI3K-Akt, MEK/ERK, mTOR signaling pathways. The following western blot indicated that AKIP1 overexpression activated while its knockdown blocked PI3K-Akt, MEK/ERK, mTOR signaling pathways in prostate cancer cells. Clinically, AKIP1 was upregulated in the prostate tumor tissues compared with paired adjacent tissues, and its tumor high expression correlated with increased pathological T, pathological N stage and poor prognosis in prostate cancer patients. Conclusion: AKIP1 promotes cell proliferation, invasion, stemness, activates PI3K-Akt, MEK/ERK, mTOR signaling pathways and correlates with worse tumor features and prognosis in prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document