scholarly journals Glucose- and time-dependence of islet amyloid formation in vitro

2007 ◽  
Vol 354 (1) ◽  
pp. 234-239 ◽  
Author(s):  
Sakeneh Zraika ◽  
Rebecca L. Hull ◽  
Jayalakshmi Udayasankar ◽  
Kristina M. Utzschneider ◽  
Jenny Tong ◽  
...  
2021 ◽  
Author(s):  
Qing-Rong Liu ◽  
Min Zhu ◽  
Pingbo Zhang ◽  
Caio H. Mazucanti ◽  
Nicholas S. Huang ◽  
...  

<a>Human insulin (<i>INS</i>) gene diverged from the ancestral genes of invertebrate and mammalian species millions of years ago. We previously found that mouse insulin gene (<i>Ins2</i>) isoforms are expressed in brain choroid plexus (ChP) epithelium cells where insulin secretion is regulated by serotonin and not by glucose. We further compared human <i>INS</i> isoform expression in postmortem <u>ChP</u> and islets of Langerhans. We uncovered novel <i>INS</i> upstream open reading frame (uORF) isoforms and their protein products. In addition, we found a novel alternatively spliced isoform that translates to a 74-amino acid (AA) proinsulin containing a shorter 19-AA C-peptide sequence, herein designated C</a>a-peptide. The middle portion of the conventional C-peptide contains b-sheet (GQVEL) and hairpin (GGGPG) motifs that are not present in Ca-peptide. Islet amyloid polypeptide (<i>IAPP</i>) is not expressed in ChP and its amyloid formation was inhibited <i>in vitro</i> by Ca-peptide more efficiently than by C-peptide. Of clinical relevance, the ratio of the 74-AA proinsulin to proconvertase processed Ca-peptide was significantly increased in islets from type 2 diabetes mellitus (T2DM) autopsy donors. Intriguingly, 100 years after the discovery of insulin we found that <i>INS</i> isoforms are present in ChP <a>from insulin-deficient autopsy donors.</a> <p> </p>


Diabetologia ◽  
2020 ◽  
Vol 63 (11) ◽  
pp. 2385-2395
Author(s):  
Andrew T. Templin ◽  
Mahnaz Mellati ◽  
Daniel T. Meier ◽  
Nathalie Esser ◽  
Meghan F. Hogan ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2107-P
Author(s):  
NATHALIE ESSER ◽  
MEGHAN F. HOGAN ◽  
ANDREW T. TEMPLIN ◽  
MARK ZIEMANN ◽  
ASSAM EL-OSTA ◽  
...  

1999 ◽  
Vol 287 (4) ◽  
pp. 781-796 ◽  
Author(s):  
Rakez Kayed ◽  
Jürgen Bernhagen ◽  
Norma Greenfield ◽  
Khuloud Sweimeh ◽  
Herwig Brunner ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 134 ◽  
Author(s):  
Anna L. Gharibyan ◽  
Tohidul Islam ◽  
Nina Pettersson ◽  
Solmaz A. Golchin ◽  
Johanna Lundgren ◽  
...  

Apolipoprotein E (ApoE) has become a primary focus of research after the discovery of its strong linkage to Alzheimer’s disease (AD), where the ApoE4 variant is the highest genetic risk factor for this disease. ApoE is commonly found in amyloid deposits of different origins, and its interaction with amyloid-β peptide (Aβ), the hallmark of AD, is well known. However, studies on the interaction of ApoEs with other amyloid-forming proteins are limited. Islet amyloid polypeptide (IAPP) is an amyloid-forming peptide linked to the development of type-2 diabetes and has also been shown to be involved in AD pathology and vascular dementia. Here we studied the impact of ApoE on IAPP aggregation and IAPP-induced toxicity on blood vessel pericytes. Using both in vitro and cell-based assays, we show that ApoE efficiently inhibits the amyloid formation of IAPP at highly substoichiometric ratios and that it interferes with both nucleation and elongation. We also show that ApoE protects the pericytes against IAPP-induced toxicity, however, the ApoE4 variant displays the weakest protective potential. Taken together, our results suggest that ApoE has a generic amyloid-interfering property and can be protective against amyloid-induced cytotoxicity, but there is a loss of function for the ApoE4 variant.


2017 ◽  
Vol 114 (42) ◽  
pp. 11127-11132 ◽  
Author(s):  
Diana Ribeiro ◽  
Istvan Horvath ◽  
Nikki Heath ◽  
Ryan Hicks ◽  
Anna Forslöw ◽  
...  

Extracellular vesicles (EVs) are small vesicles released by cells to aid cell–cell communication and tissue homeostasis. Human islet amyloid polypeptide (IAPP) is the major component of amyloid deposits found in pancreatic islets of patients with type 2 diabetes (T2D). IAPP is secreted in conjunction with insulin from pancreatic β cells to regulate glucose metabolism. Here, using a combination of analytical and biophysical methods in vitro, we tested whether EVs isolated from pancreatic islets of healthy patients and patients with T2D modulate IAPP amyloid formation. We discovered that pancreatic EVs from healthy patients reduce IAPP amyloid formation by peptide scavenging, but T2D pancreatic and human serum EVs have no effect. In accordance with these differential effects, the insulin:C-peptide ratio and lipid composition differ between EVs from healthy pancreas and EVs from T2D pancreas and serum. It appears that healthy pancreatic EVs limit IAPP amyloid formation via direct binding as a tissue-specific control mechanism.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mikkel Christensen ◽  
Nils A. Berglund ◽  
Birgit Schiøtt

Islet amyloid polypeptide (IAPP) is a proposed cause of the decreased beta-cell mass in patients with type-II diabetes. The molecular composition of the cell-membrane is important for regulating IAPP cytotoxicity and aggregation. Cholesterol is present at high concentrations in the pancreatic beta-cells, and in-vitro experiments have indicated that it affects the amyloid formation of IAPP either by direct interactions or by changing the properties of the membrane. In this study we apply atomistic, unbiased molecular dynamics simulations at a microsecond timescale to investigate the effect of cholesterol on membrane bound IAPP. Simulations were performed with various combinations of cholesterol, phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. In all simulations, the helical structure of monomer IAPP was stabilized by the membrane. We found that cholesterol decreased the insertion depth of IAPP compared to pure phospholipid membranes, while PS lipids counteract the effect of cholesterol. The aggregation propensity has previously been proposed to correlate with the insertion depth of IAPP, which we found to decrease with the increased ordering of the lipids induced by cholesterol. Cholesterol is depleted in the vicinity of IAPP, and thus our results suggest that the effect of cholesterol is indirect.


2019 ◽  
Vol 32 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Kyung-Hoon Lee ◽  
Alexander Zhyvoloup ◽  
Daniel Raleigh

Abstract The polypeptide amylin is responsible for islet amyloid in type 2 diabetes, a process which contributes to β-cell death in the disease. The role of the N-terminal region of amylin in amyloid formation is relatively unexplored, although removal of the disulfide bridged loop between Cys-2 and Cys-7 accelerates amyloid formation. We examine the des Lys-1 variant of human amylin (h-amylin), a variant which is likely produced in vivo. Lys-1 is a region of high charge density in the h-amylin amyloid fiber. The des Lys-1 polypeptide forms amyloid on the same time scale as wild-type amylin in phosphate buffered saline, but does so more rapidly in Tris. The des Lys-1 variant is somewhat less toxic to cultured INS cells than wild type. The implications for the in vitro mechanism of amyloid formation and for comparative analysis of amyloidogenicity are discussed.


2017 ◽  
Vol 59 (3) ◽  
pp. R121-R140 ◽  
Author(s):  
Daniel Raleigh ◽  
Xiaoxue Zhang ◽  
Benoît Hastoy ◽  
Anne Clark

Islet amyloid polypeptide (IAPP) forms cytotoxic oligomers and amyloid fibrils in islets in type 2 diabetes (T2DM). The causal factors for amyloid formation are largely unknown. Mechanisms of molecular folding and assembly of human IAPP (hIAPP) into β-sheets, oligomers and fibrils have been assessed by detailed biophysical studies of hIAPP and non-fibrillogenic, rodent IAPP (rIAPP); cytotoxicity is associated with the early phases (oligomers/multimers) of fibrillogenesis. Interaction with synthetic membranes promotes β-sheet assembly possibly via a transient α-helical molecular conformation. Cellular hIAPP cytotoxicity can be activated from intracellular or extracellular sites. In transgenic rodents overexpressing hIAPP, intracellular pro-apoptotic signals can be generated at different points in β-cell protein synthesis. Increased cellular trafficking of proIAPP, failure of the unfolded protein response (UPR) or excess trafficking of misfolded peptide via the degradation pathways can induce apoptosis; these data indicate that defects in intracellular handling of hIAPP can induce cytotoxicity. However, there is no evidence for IAPP overexpression in T2DM. Extracellular amyloidosis is directly related to the degree of β-cell apoptosis in islets in T2DM. IAPP fragments, fibrils and multimers interact with membranes causing disruption in vivo and in vitro. These findings support a role for extracellular IAPP in β-sheet conformation in cytotoxicity. Inhibitors of fibrillogenesis are useful tools to determine the aberrant mechanisms that result in hIAPP molecular refolding and islet amyloidosis. However, currently, their role as therapeutic agents remains uncertain.


Sign in / Sign up

Export Citation Format

Share Document