Silencing of SlFTR-c, the catalytic subunit of ferredoxin:thioredoxin reductase, induces pathogenesis-related genes and pathogen resistance in tomato plants

2010 ◽  
Vol 399 (4) ◽  
pp. 750-754 ◽  
Author(s):  
Chan Ju Lim ◽  
Woong Bom Kim ◽  
Bok-Sim Lee ◽  
Ha Youn Lee ◽  
Tae-Ho Kwon ◽  
...  
2021 ◽  
Vol 22 (15) ◽  
pp. 8354
Author(s):  
Zalán Czékus ◽  
András Kukri ◽  
Kamirán Áron Hamow ◽  
Gabriella Szalai ◽  
Irma Tari ◽  
...  

The first line of plant defence responses against pathogens can be induced by the bacterial flg22 and can be dependent on various external and internal factors. Here, we firstly studied the effects of daytime and ethylene (ET) using Never ripe (Nr) mutants in the local and systemic defence responses of intact tomato plants after flg22 treatments. Flg22 was applied in the afternoon and at night and rapid reactions were detected. The production of hydrogen peroxide and nitric oxide was induced by flg22 locally, while superoxide was induced systemically, in wild type plants in the light period, but all remained lower at night and in Nr leaves. Flg22 elevated, locally, the ET, jasmonic acid (JA) and salicylic acid (SA) levels in the light period; these levels did not change significantly at night. Expression of Pathogenesis-related 1 (PR1), Ethylene response factor 1 (ERF1) and Defensin (DEF) showed also daytime- and ET-dependent changes. Enhanced ERF1 and DEF expression and stomatal closure were also observable in systemic leaves of wild type plants in the light. These data demonstrate that early biotic signalling in flg22-treated leaves and distal ones is an ET-dependent process and it is also determined by the time of day and inhibited in the early night phase.


1995 ◽  
Vol 14 (23) ◽  
pp. 5753-5761 ◽  
Author(s):  
R. Beffa ◽  
M. Szell ◽  
P. Meuwly ◽  
A. Pay ◽  
R. Vögeli-Lange ◽  
...  

2001 ◽  
Vol 14 (2) ◽  
pp. 214-224 ◽  
Author(s):  
Véronique Pautot ◽  
Frances M. Holzer ◽  
Josette Chaufaux ◽  
Linda L. Walling

Tomato plants constitutively express a neutral leucine aminopeptidase (LAP-N) and an acidic LAP (LAP-A) during floral development and in leaves in response to insect infestation, wounding, and Pseudomonas syringae pv. tomato infection. To assess the physiological roles of LAP-A, a LapA-antisense construct (35S:asLapA1) was introduced into tomato. The 35S:asLapA1 plants had greatly reduced or showed undetectable levels of LAP-A and LAP-N proteins in healthy and wounded leaves and during floral development. Despite the loss of these aminopeptidases, no global changes in protein profiles were noted. The 35S:asLapA1 plants also exhibited no significant alteration in floral development and did not impact the growth and development of Manduca sexta and P. syringae pv. tomato growth rates during compatible or incompatible infections. To investigate the mechanism underlying the strong induction of LapA upon P. syringae pv. tomato infection, LapA expression was monitored after infection with coronatine-producing and -deficient P. syringae pv. tomato strains. LapA RNA and activity were detected only with the coronatine-producing P. syringae pv. tomato strain. Coronatine treatment of excised shoots caused increases in RNAs for jasmonic acid (JA)-regulated wound-response genes (LapA and pin2) but did not influence expression of a JA-regulated pathogenesis-related protein gene (PR-1). These results indicated that coronatine mimicked the wound response but was insufficient to activate JA-regulated PR genes.


1997 ◽  
Vol 100 (2) ◽  
pp. 341-352 ◽  
Author(s):  
Pi-Fang Linda Chang ◽  
Yi Xu ◽  
Meena L. Narasimhan ◽  
Kheng T. Cheah ◽  
Matilde Paino D'Urzo ◽  
...  

Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1204-1209 ◽  
Author(s):  
Hardian S. Addy ◽  
Ahmed Askora ◽  
Takeru Kawasaki ◽  
Makoto Fujie ◽  
Takashi Yamada

The wide host range of Ralstonia solanacearum, causal agent of bacterial wilt, and its ability to survive for long periods in the environment restrict the effectiveness of cultural and chemical control measures. The use of phages for disease control is a fast-expanding trend of plant protection with great potential to replace chemical measures. The filamentous phage ϕRSM3 that infects R. solanacearum strains and inactivates virulence on plants is a potential agent for controlling bacterial wilt in tomato. We demonstrated that inoculation of ϕRSM3-infected cells into tomato plants did not cause bacterial wilt. Instead, ϕRSM3-infected cells enhanced the expression of pathogenesis-related (PR) genes, including PR-1a, PR-2b, and PR7, in tomato plants. Moreover, pretreatment with ϕRSM-infected cells protect tomato plants from infection by virulent R. solanacearum strains. The effective dose of ϕRSM3-infected cells for disease prevention was determined to be approximately 105 CFU/ml. Because the ϕRSM3-infected cells can grow and continue to produce infectious phage particles under appropriate conditions, ϕRSM phages may serve as an efficient tool to control bacterial wilt in crops.


1997 ◽  
Vol 100 (2) ◽  
pp. 341-352 ◽  
Author(s):  
Pi-Fang Linda Chang ◽  
Yi Xu ◽  
Meena L. Narasimhan ◽  
Kheng T. Cheah ◽  
Matilde Paino D'Urzo ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Muhammad Ali ◽  
Anthony Tumbeh Lamin-Samu ◽  
Izhar Muhammad ◽  
Mohamed Farghal ◽  
Abdul Mateen Khattak ◽  
...  

Anthracnose, caused by Colletotrichum gloeosporioides, is one of the most damaging pepper (Capsicum annum L.) disease. Melatonin induces transcription of defense-related genes that enhance resistance to pathogens and mediate physiological activities in plants. To study whether the melatonin-mediated pathogen resistance is associated with chitinase gene (CaChiIII2), pepper plants and Arabidopsis seeds were treated with melatonin, then CaChiIII2 activation, hydrogen peroxide (H2O2) levels, and antioxidant enzymes activity during plant–pathogen interactions were investigated. Melatonin pretreatment uncoupled the knockdown of CaChiIII2 and transiently activated its expression level in both control and CaChiIII2-silenced pepper plants and enhanced plant resistance. Suppression of CaChiIII2 in pepper plants showed a significant decreased in the induction of defense-related genes and resistance to pathogens compared with control plants. Moreover, melatonin efficiently enabled plants to maintain intracellular H2O2 concentrations at steady-state levels and enhanced the activities of antioxidant enzymes, which possibly improved disease resistance. The activation of the chitinase gene CaChiIII2 in transgenic Arabidopsis lines was elevated under C. gloeosporioides infection and exhibited resistance through decreasing H2O2 biosynthesis and maintaining H2O2 at a steady-state level. Whereas melatonin primed CaChiIII2-overexpressed (OE) and wild-type (WT) Arabidopsis seedlings displayed a remarkable increase in root-length compared to the unprimed WT plants. Using an array of CaChiIII2 knockdown and OE, we found that melatonin efficiently induced CaChiIII2 and other pathogenesis-related genes expressions, responsible for the innate immunity response of pepper against anthracnose disease.


Sign in / Sign up

Export Citation Format

Share Document