Islet-specific monoamine oxidase A and B expression depends on MafA transcriptional activity and is compromised in type 2 diabetes

2015 ◽  
Vol 468 (4) ◽  
pp. 629-635 ◽  
Author(s):  
Elvira Ganic ◽  
Jenny K. Johansson ◽  
Hedvig Bennet ◽  
Malin Fex ◽  
Isabella Artner
2011 ◽  
pp. 309-315 ◽  
Author(s):  
S. F. NUNES ◽  
I. V. FIGUEIREDO ◽  
J. S. PEREIRA ◽  
E. T. DE LEMOS ◽  
F. REIS ◽  
...  

Monoamine oxidase (MAO, type A and B) and semicarbazide-sensitive amine oxidase (SSAO) metabolize biogenic amines, however, the impact of these enzymes in arteries from patients with type 2 diabetes remains poorly understood. We investigated the kinetic parameters of the enzymes to establish putative correlations with noradrenaline (NA) content and patient age in human mesenteric arteries from type 2 diabetic patients. The kinetic parameters were evaluated by radiochemical assay and NA content by high-performance liquid chromatography (HPLC). The activity of MAO-A and SSAO in type 2 diabetic vascular tissues was significantly lower compared to the activity obtained in non-diabetic tissues. In the correlation between MAO-A (Km) and NA content, we found a positive correlation for both the diabetic and non-diabetic group, but no correlation was established for patient age. In both groups, MAO-B (Vmax) showed a negative correlation with age. The results show that MAO-A and SSAO activities and NA content of type 2 diabetic tissues are lower compared to the non-diabetic tissues, while MAO-B activity remained unchanged. These remarks suggest that MAO-A and SSAO may play an important role in vascular tissue as well as in the vascular pathophysiology of type 2 diabetes.


Author(s):  
Shubham Khetan ◽  
Susan Kales ◽  
Romy Kursawe ◽  
Alexandria Jillette ◽  
Steven K. Reilly ◽  
...  

AbstractA major goal in functional genomics and complex disease genetics is to identify functional cis-regulatory elements (CREs) and single nucleotide polymorphisms (SNPs) altering CRE activity in disease-relevant cell types and environmental conditions. We tested >13,000 sequences containing each allele of 6,628 SNPs associated with altered in vivo chromatin accessibility in human islets and/or type 2 diabetes risk (T2D GWAS SNPs) for transcriptional activity in ß cell under steady state and endoplasmic reticulum (ER) stress conditions using the massively parallel reporter assay (MPRA). Approximately 30% (n=1,983) of putative CREs were active in at least one condition. SNP allelic effects on in vitro MPRA activity strongly correlated with their effects on in vivo islet chromatin accessibility (Pearson r=0.52), i.e., alleles associated with increased chromatin accessibility exhibited higher MPRA activity. Importantly, MPRA identified 220/2500 T2D GWAS SNPs, representing 104 distinct association signals, that significantly altered transcriptional activity in ß cells. This study has thus identified functional ß cell transcription-activating sequences with in vivo relevance, uncovered regulatory features that modulate transcriptional activity in ß cells under steady state and ER stress conditions, and substantially expanded the set of putative functional variants that modulate transcriptional activity in ß cells from thousands of genetically-linked T2D GWAS SNPs.


2020 ◽  
Author(s):  
Steven Parks ◽  
Tian Gao ◽  
Natalia Jimenez Awuapura ◽  
Joseph Ayathamattam ◽  
Pauline L. Chabosseau ◽  
...  

ABSTRACTLevels of the transcription factor ATF6α, a key mediator of the unfolded protein response, that provides cellular protection during the progression endoplasmic reticulum (ER) stress, are markedly reduced in the pancreatic islet of patients with type 2 diabetes and in rodent models of the disease, including ob/ob and high fat-fed mice. Sorcin (gene name SRI) is a calcium (Ca2+) binding protein involved in maintaining ER Ca2+ homeostasis.We have previously shown that overexpressing sorcin under the rat insulin promoter in transgenic mice was protective against high fat diet-induced pancreatic beta cell dysfunction, namely preserving intracellular Ca2+ homeostasis and glucose-stimulated insulin secretion during lipotoxic stress. Additionally, sorcin overexpression was apparently activating ATF6 signalling in MIN6 cells despite lowering ER stress.Here, in order to investigate further the relationship between sorcin and ATF6, we describe changes in sorcin expression during ER and lipotoxic stress and changes in ATF6 signalling after sorcin overexpression or inactivation, both in excitable and non-excitable cells.Sorcin mRNA levels were significantly increased in response to the ER stress-inducing agents thapsigargin and tunicamycin, but not by palmitate. On the contrary, palmitate caused a significant decrease in sorcin expression as assessed by both qRT-PCR and Western blotting despite inducing ER stress. Moreover, palmitate prevented the increase in sorcin expression induced by thapsigargin. In addition, sorcin overexpression significantly increased ATF6 transcriptional activity, whereas sorcin inactivation decreased ATF6 signalling. Finally, sorcin overexpression increased levels of ATF6 immunoreactivity and FRET imaging experiments following ER stress induction by thapsigargin showed a direct sorcin-ATF6 interaction.Altogether, our data suggest that sorcin down-regulation during lipotoxicity may prevent full ATF6 activation and a normal UPR during the progression of obesity and insulin resistance, contributing to beta cell failure and type 2 diabetes.


2019 ◽  
Author(s):  
Sara Althari ◽  
Laeya A. Najmi ◽  
Amanda J. Bennett ◽  
Ingvild Aukrust ◽  
Jana K. Rundle ◽  
...  

SummaryBackgroundExome sequencing in diabetes presents a diagnostic challenge as depending on frequency, functional impact and genomic and environmental contexts, HNF1A variants can cause Maturity-onset Diabetes of the Young (MODY), increase type 2 diabetes risk, or be benign. A correct diagnosis matters as it informs on treatment, progression, and family risk. We describe a multi-dimensional functional dataset of 73 HNF1A missense variants identified in exomes of 12,940 individuals. Our aim was to develop an analytical framework for stratifying variants along the HNF1A phenotypic continuum to facilitate diagnostic interpretation.MethodsHNF1A variant function was determined by 4 different molecular assays. Structure of the multi-dimensional dataset was explored using principal component analysis, k-means, and hierarchical clustering. Weights for tissue-specific isoform expression and functional domain were integrated. Functionally annotated variant subgroups were used to re-evaluate genetic diagnoses in national MODY diagnostic registries.FindingsHNF1A variants demonstrated a range of behaviours across the assays. The structure of the multi-parametric data was shaped primarily by transactivation. Using unsupervised learning methods, we obtained high-resolution functional clusters of the variants which separated known causal MODY variants from benign and type 2 diabetes risk variants and led to reclassification of 4% and 9% of HNF1A variants identified in the UK and Norway MODY diagnostic registries, respectively.InterpretationOur proof-of-principle analyses facilitated informative stratification of HNF1A variants along the continuum, allowing improved evaluation of clinical significance, management and precision medicine in diabetes clinics. Transcriptional activity appears a superior readout supporting pursuit of transactivation-centric experimental designs for high-throughput functional screens.FundingWellcome Trust, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), European Research Council, Norwegian Research Council, Stiftelsen Kristian Gerhard Jebsen, Western Norway Regional Health Authority, Novo Nordisk Fonden, Royal Norwegian Diabetes Foundation.Research in contextEvidence before the studyMolecular characterisation pipelines for studying the function of transcription factors consist primarily of in vitro cellular assays which interrogate transcriptional activity, protein abundance, localisation of the transcription factor to the nucleus, and binding to relevant DNA recognition sequences. The experimental techniques used to explore these mechanisms in vitro vary in robustness and reliability. There exist a wide variety of reported functional consequences of HNF1A variants in the literature, a gene causing the most common form of Maturity-onset Diabetes of the Young (HNF1A-MODY). The standard approach for analysing multi-tiered functional datasets has been to evaluate each functional parameter independently. Data from functional characterisation efforts of the HNF-1A protein encoded by the HNF1A gene, support that the degree of HNF-1A disruption tends to correlate positively with phenotypic severity: MODY-causing protein-altering variants impair HNF-1A transcriptional activity more severely (≤30% vs. wild-type) than HNF1A variants associated with increased risk for developing type 2 diabetes in population-specific contexts (40-60% vs. wild-type). Rare variants which demonstrated intermediate function (between MODY-casual and wild-type) in transactivation and nuclear localisation assays were shown to be associated with a 6-fold increase in type 2 diabetes predisposition.Added value of this studyWe have developed a proof-of-principle analytical framework for robust and unbiased variant stratification using multi-dimensional functional follow-up data from a large number of exome-identified missense variants in HNF1A. Through our analytical approach we were able to perform a comprehensive assessment of molecular function by utilising data from as many mechanistic dimensions as possible, avoiding arbitrarily determined cut-offs based on 1D functional data. Our method facilitated informative spatial organization of variants along the HNF1A molecular-phenotypic spectrum and an exploration of the contributions of each in vitro molecular mechanism on meaningful functional, and therefore clinical, stratification. Further, we were able to perform sensitive mapping of variant effects on molecular function with phenotypic outcome using clinical and genetic data from national MODY diagnostic registries of UK and Norway. This effort allowed us to annotate functional clusters with clinical knowledge and identify discordant classifications between functional genotype and clinical phenotype.Implications of all the available evidenceOur novel approach towards analysing large functional datasets enables sensitive variant-phenotype mapping and multi-layered variant annotation. It also assists in prioritisation of functional elements and signatures for Multiplexed Assays of Variant Effects (MAVEs) whilst they largely remain limited to a single functional readout. Indeed, comprehensively annotated HNF1A variant clusters can aid in the interpretation and clinical classification of variants, and can also be utilised to calibrate supervised variant classification models built with high-throughput-derived experimental data.


2006 ◽  
Vol 4 (1) ◽  
pp. nrs.04003 ◽  
Author(s):  
Ronald N. Cohen

The nuclear receptor corepressors NCoR and SMRT repress gene transcription by recruiting a histone deacetylase complex. Their roles in PPARγ action have been controversial. Recent evidence, however, suggests that NCoR and SMRT repress PPARγ-mediated transcriptional activity on specific promoters in the adipocyte. In addition, by repressing PPARγ action, these corepressors inhibit the ability of adipocyte differentiation to proceed. A further understanding of corepressor action in the adipocyte will provide insight into the balance of forces regulating adipogenesis, insulin sensitivity, and Type 2 diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document