Protective effect of bacillopeptidase CFR5 from Bacillus subtilis CFR5 on cerulein-induced pancreatitis

2017 ◽  
Vol 491 (2) ◽  
pp. 455-462 ◽  
Author(s):  
G.R. Sharmila ◽  
G. Venkateswaran
2021 ◽  
pp. 104898
Author(s):  
Jun-Hong Xing ◽  
Qiong-Yan Li ◽  
Wei Zhao ◽  
Gui-Lian Yang ◽  
Rong-Rong Zhang ◽  
...  

2019 ◽  
Vol 49 (2) ◽  
pp. 57-63
Author(s):  
N. V. Davydova ◽  
V. Yu. Koptev ◽  
Yu. N. Kozlova ◽  
L. I. Sulimova ◽  
V. N. Afonyushkin ◽  
...  

In the course of the study permeability of intestinal mucosa of chickens suffering from eimeriosis while treating them with various veterinary drugs, including probiotics, was evaluated. The simulation of a typical clinical picture of eimeriosis was carried out by oral administration of suspension with coccidial oocysts (1.6 × 105/head) using a probe. To create different forms and different intensity of inflammatory processes, chickens that received various anticoccidial preparations and probiotic strain Bacillus subtilis were infected with eimeria. According to the data from an autopsy, it was found that the use of a spore probiotic based on Bacillus subtilis and anticoccidial drugs containing robenidine hydrochloride and salinomycin had a positive protective effect when treating chickens from eimeriosis. A similar picture was observed when assessing permeability of intestinal mucosa as affected by bacteriophage, whereby permeability decreased with the use of probiotics and the above-mentioned active agents. In general, the decrease in productivity was significant in all groups. However, the effect of spore-based probiotics was quite pronounced against the background of eimeria polyresistance. In the situation where anticoccidial drugs are less effective, the use of a spore-based probiotic can have a noticeable protective effect. The effect of all anticoccidial drugs under study on the concentration of oocysts and the state of the mucosa was insignificant, which indicated polyresistance of different types of eimeria isolated from biological material to these drugs. The analysis of the intestinal mucosa integrity, based on the study of mucosa permeability to bacteriophages and a Johnson and Reid scoring procedure showed that a spore probiotic based on B. subtilis and anticoccidial drugs containing robenidine and salinomycin had the best protective effect against eimeriosis caused by field isolates of eimeria. When treating chickens suffering from eimeriosis caused by polyresistant forms of E. acervulina and E. tenella, it is advisable to use probiotics alongside with drugs based on robenidine and salinomycin.


Author(s):  
D. Garshina ◽  
A. Ibragimov ◽  
O. Lastochkina

Maximum growth-stimulating and protective effect of endophytic bacteria Bacillus subtilis 10-4 on wheat plants under normal and drought stress conditions reached when its applied in composition with salicylic acid were discovered.


2019 ◽  
Vol 85 (6) ◽  
pp. 1011-1018
Author(s):  
Xiaomeng Ren ◽  
Binbin Wu ◽  
Feng Zhao ◽  
Lingling Qi ◽  
Xianfeng Qiu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Lupeng Chen ◽  
Shuai Zhang ◽  
Shi Wu ◽  
Zhuqing Ren ◽  
Guoquan Liu ◽  
...  

As the first line of defense against intestinal bacteria and toxins, intestinal epithelial cells are always exposed to bacteria or lipopolysaccharide (LPS), whereas pathogenic bacteria or LPS can cause intestinal epithelial cell damage. Previous studies have shown that konjac mannan oligosaccharides (KMOS) have a positive effect on maintaining intestinal integrity, and Bacillus subtilis (BS) can promote the barrier effect of the intestine. However, it is still unknown whether KMOS and BS have a synergistic protective effect on the intestines. In this study, we used the LPS-induced Caco-2 cell injury model and mouse intestinal injury model to study the synergistic effects of KMOS and BS. Compared with KMOS or BS alone, co-treatment with KMOS and BS significantly enhanced the activity and antioxidant capacity of Caco-2 cell, protected mouse liver and ileum from LPS-induced oxidative damage, and repaired tight junction and mucus barrier damage by up-regulating the expression of Claudin-1, ZO-1 and MUC-2. Our results demonstrate that the combination of KMOS and BS has a synergistic repair effect on inflammatory and oxidative damage of Caco-2 cells and aIIeviates LPS-induced acute intestinal injury in mice.


Author(s):  
Dwight Anderson ◽  
Charlene Peterson ◽  
Gursaran Notani ◽  
Bernard Reilly

The protein product of cistron 3 of Bacillus subtilis bacteriophage Ø29 is essential for viral DNA synthesis and is covalently bound to the 5’-termini of the Ø29 DNA. When the DNA-protein complex is cleaved with a restriction endonuclease, the protein is bound to the two terminal fragments. The 28,000 dalton protein can be visualized by electron microscopy as a small dot and often is seen only when two ends are in apposition as in multimers or in glutaraldehyde-fixed aggregates. We sought to improve the visibility of these small proteins by use of antibody labeling.


Sign in / Sign up

Export Citation Format

Share Document