In silico designed RNA aptamer against epithelial cell adhesion molecule for cancer cell imaging

2019 ◽  
Vol 509 (4) ◽  
pp. 937-942 ◽  
Author(s):  
Rohit Bavi ◽  
Zicun Liu ◽  
Zhihao Han ◽  
Hang Zhang ◽  
Yueqing Gu
Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1879 ◽  
Author(s):  
Jianguo Xu ◽  
Xinxin Wang ◽  
Chao Yan ◽  
Wei Chen

A new electrochemical immunosensor for cancer cell detection based on a specific interaction between the metastasis-related antigen of epithelial cell adhesion molecule (EpCAM) on the cell membrane and its monoclonal antibody (Anti-EpCAM) immobilized on a gold electrode has been developed. The amino-terminated polyamidoamine dendrimer (G6 PAMAM) was first covalently attached to the 3-mercaptopropionic acid (MPA)-functionalized gold electrode to obtain a thin film, and then completely carboxylated by succinic anhydride (SA). Next, the Anti-EpCAM was covalently bound with the G6 PAMAM to obtain a stable recognition layer. In the presence of the EpCAM expressing hepatocellular carcinomas cell line of HepG2, the specific immune recognition (Anti-EpCAM/EpCAM) led to an obvious change of the electron transfer ability. The properties of the layer-by-layer assembly process was examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The final determination of HepG2 cells was performed in the presence of the reversible [Fe(CN)6]3−/4− redox couple using impedance technique. Based on the advantages of PAMAM nanomaterial and immune reaction, a linear response to HepG2 cells ranging from 1 × 104 to 1 × 106 cells mL−1 with a calculated detection limit of 2.1 × 103 cells mL−1 was obtained. We expect this method can provide a potential tool for cancer cell monitoring and protein expression analysis.


ACS Omega ◽  
2020 ◽  
Vol 5 (48) ◽  
pp. 30808-30816
Author(s):  
Arijit Mal ◽  
Pranay Dey ◽  
Robert Michael Hayes ◽  
Justin V. McCarthy ◽  
Arjun Ray ◽  
...  

Author(s):  
Fatemeh Sadat Javadian ◽  
Majid Basafa ◽  
Aidin Behravan ◽  
Atieh Hashemi

Abstract Background Overexpression of the EpCAM (epithelial cell adhesion molecule) in malignancies makes it an attractive target for passive immunotherapy in a wide range of carcinomas. In comparison with full-length antibodies, due to the small size, the scFvs (single-chain variable fragments) are more suitable for recombinant expression in E. coli (Escherichia coli). However, the proteins expressed in large amounts in E. coli tend to form inclusion bodies that need to be refolded which may result in poor recovery of bioactive proteins. Various engineered strains were shown to be able to alleviate the insolubility problem. Here, we studied the impact of four E. coli strains on the soluble level of anti-EpEX-scFv (anti-EpCAM extracellular domain-scFv) protein. Results Although results showed that the amount of soluble anti-EpEX-scFv obtained in BL21TM (DE3) (114.22 ± 3.47 mg/L) was significantly higher to those produced in the same condition in E. coli RosettaTM (DE3) (71.39 ± 0.31 mg/L), and OrigamiTM T7 (58.99 ± 0.44 mg/L) strains, it was not significantly different from that produced by E. coli SHuffleTM T7 (108.87 ± 2.71 mg/L). Furthermore, the highest volumetric productivity of protein reached 318.29 ± 26.38 mg/L in BL21TM (DE3). Conclusions Although BL21TM (DE3) can be a suitable strain for high-level production of anti-EpEX-scFv protein, due to higher solubility yield (about 55%), E. coli SHuffleTM T7 seems to be better candidate for soluble production of scfv compared to BL21TM (DE3) (solubility yield of about 30%).


Sign in / Sign up

Export Citation Format

Share Document