Identification and characterization of the novel FAD-binding lobe G75S mutation in cytochrome b5 reductase: An aid to determine recessive congenital methemoglobinemia status in an infant

2006 ◽  
Vol 36 (1) ◽  
pp. 81-90 ◽  
Author(s):  
M.J. Percy ◽  
L.J. Crowley ◽  
D. Roper ◽  
T.J. Vulliamy ◽  
D.M. Layton ◽  
...  
Genomics ◽  
2004 ◽  
Vol 83 (3) ◽  
pp. 425-438 ◽  
Author(s):  
Benjamin J Curry ◽  
Shaun D Roman ◽  
Ceanne A Wallace ◽  
Rebecca Scott ◽  
Elana Miriami ◽  
...  

Blood ◽  
2001 ◽  
Vol 97 (4) ◽  
pp. 1106-1114 ◽  
Author(s):  
Jan Dekker ◽  
Michel H. M. Eppink ◽  
Rob van Zwieten ◽  
Thea de Rijk ◽  
Angel F. Remacha ◽  
...  

Abstract Cytochrome b5 reductase (b5R) deficiency manifests itself in 2 distinct ways. In methemoglobinemia type I, the patients only suffer from cyanosis, whereas in type II, the patients suffer in addition from severe mental retardation and neurologic impairment. Biochemical data indicate that this may be due to a difference in mutations, causing enzyme instability in type I and complete enzyme deficiency or enzyme inactivation in type II. We have investigated 7 families with methemoglobulinemia type I and found 7 novel mutations in the b5R gene. Six of these mutations predicted amino acid substitutions at sites not involved in reduced nicotinamide adenine dinucleotide (NADH) or flavin adenine dinucleotide (FAD) binding, as deduced from a 3-dimensional model of human b5R. This model was constructed from comparison with the known 3-dimensional structure of pig b5R. The seventh mutation was a splice site mutation leading to skipping of exon 5 in messenger RNA, present in heterozygous form in a patient together with a missense mutation on the other allele. Eight other amino acid substitutions, previously described to cause methemoglobinemia type I, were also situated in nonessential regions of the enzyme. In contrast, 2 other substitutions, known to cause the type II form of the disease, were found to directly affect the consensus FAD-binding site or indirectly influence NADH binding. Thus, these data support the idea that enzyme inactivation is a cause of the type II disease, whereas enzyme instability may lead to the type I form.


2013 ◽  
Vol 94 (3) ◽  
pp. 570-582 ◽  
Author(s):  
Chao-Ting Xiao ◽  
Luis G. Giménez-Lirola ◽  
Priscilla F. Gerber ◽  
Yong-Hou Jiang ◽  
Patrick G. Halbur ◽  
...  

Many astrovirus (AstV) species are associated with enteric disease, although extraintestinal manifestations in mammalian and avian hosts have also been described. In this study, the prevalence rates of porcine AstV types 1–5 (PAstV1–PAstV5) were investigated using faecal samples from 509 pigs of which 488 (95.9 %) came from farms with a history of diarrhoea. All of the five known PAstV types were found to circulate in pigs in the USA, and co-infection of a single pig with two or more PAstV types was frequently observed. A high overall prevalence of 64.0 % (326/509) of PAstV RNA-positive samples was detected, with 97.2 % (317/326) of the PAstV RNA-positive pigs infected with PAstV4. Further genomic sequencing and characterization of the selected isolates revealed low sequence identities (49.2–89.0 %) with known PAstV strains, indicating novel types or genotypes of PAstV2, PAstV4 and PAstV5. Some new features of the genomes of the PAstVs were also discovered. The first complete genome of a PAstV3 isolate was obtained and showed identities of 50.5–55.3 % with mink AstV and the novel human AstVs compared with 38.4–42.7 % with other PAstV types. Phylogenetic analysis revealed that PAstV1, PAstV2 and PAstV3 were more closely related to AstVs from humans and other animals than to each other, indicating past cross-species transmission and the zoonotic potential of these PAstVs.


2012 ◽  
Vol 93 (7) ◽  
pp. 1612-1619 ◽  
Author(s):  
Kazuya Ishikawa ◽  
Kensaku Maejima ◽  
Ken Komatsu ◽  
Yugo Kitazawa ◽  
Masayoshi Hashimoto ◽  
...  

Fig mosaic virus (FMV), a negative-strand RNA virus, is recognized as a causal agent of fig mosaic disease. We performed RT-PCR for 14 FMV isolates collected from symptomatic fig plants in Japan and Serbia using primers corresponding to the conserved 13 nt stretches found at the termini of FMV genomic segments. The resulting simultaneous amplification of all FMV genomic segments yielded four previously identified segments of FMV and two novel segments. These novel FMV genomic RNA segments were found in each of the 14 FMV isolates analysed. In Northern blot studies, both the sense and antisense strands of these novel RNA molecules accumulated in FMV-infected fig leaves but not in uninfected fig leaves, confirming that they replicate as FMV genomic segments. Sequence analysis showed that the novel RNA segments are similar, in their structural organization and molecular evolutionary patterns, to those of known FMV genomic RNA segments. Our findings thus indicate that these newly discovered RNA segments are previously unidentified FMV genomic segments, which we have designated RNA5 and RNA6.


Biotecnia ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 127-134
Author(s):  
Ana Claudia Sánchez-Espinosa ◽  
José Luis Villarruel-Ordaz ◽  
Luis David Maldonado Bonilla

Bananas are important crops in developing countries with tropical climate. In Mexico, the banana production has increased, and it must be guaranteed. The Panama disease, caused by the fungus Fusarium oxysporum f.sp. cubense threatens the current banana production, for what is necessary to implement methods to protect this crop. Fungi from genus Trichoderma are natural residents of the rhizosphere. This genus comprises mycoparasite species used to control diseases caused by phytopathogenic fungi, and also benefit plant development. In this report, we present data of the identification and characterization of the novel strain Trichoderma harzianum M110 that displays antagonism and biocontrol potential in laboratory conditions. Exploration of the rhizosphere and the endophytic microbial communities might help to identify microbes adapted to banana plants that can be incorporated in organic biological control formulations that ensure production of Fusarium-free plants and healthy fruits with export quality.


2021 ◽  
Vol 33 (8) ◽  
pp. 1743-1748
Author(s):  
Ramulu Yanaka ◽  
Hima Bindu Gandham ◽  
Chidananda Swamy Rumalla ◽  
Muralidharan Kaliyaperumal ◽  
Shaik John Saida ◽  
...  

Gefitinib (GFT) sold under the brand name Iressa, is a medication used to treat certain type of breast, lung and other cancers, Gefitinib was subject to stress degradation under acidic, basic, peroxide mediated oxidation, photolytic and thermal degradation. The stress degradation was performed according to ICH guidelines Q1A(R2) and the drug was inert under thermal and photolytic conditions. One degradant is identified in acid hydrolysis referred as 7-methoxy-6-(3-morpholinopropoxy) quinazolin-4(3H)-one (GFT-DP1) and two degradants were formed in peroxide mediated hydrolysis referred as 4-(3-((4-((3- chloro-4-fluorophenyl)amino)-7-methoxy-1-oxidoquinazolin-6-yl)oxy)-propyl)morpholine-4-oxide (GFT-DP2) and 4-(3-((4-((3-chloro-4-fluorophenyl)amino)-7-methoxyquinazolin-6-yl)oxy)-propyl)- morpholine-4-oxide (GFT-DP3). In present study, all the novel three degradation product structures were confirmed by HRMS and 1D (1H, 13C) and 2D (COSY, HSQC and HMBC) based on 1D and 2D NMR data proton and carbon chemical shift values assigned exactly for all degradation products. A stability indicating RP-UPLC method was developed and validated with shorter run time and this method was validated in terms of linearity, specificity, accuracy, LOD and LOQ.


Sign in / Sign up

Export Citation Format

Share Document