Kinetic evaluation on the degradation process of anaerobic digestion fed with piggery wastewater at different OLRs

2016 ◽  
Vol 113 ◽  
pp. 123-132 ◽  
Author(s):  
Qunpeng Cheng ◽  
Zhihua Chen ◽  
Fang Deng ◽  
Yuhua Liao ◽  
Bo Xiao ◽  
...  
2016 ◽  
Vol 74 (9) ◽  
pp. 2152-2161 ◽  
Author(s):  
Nina Duan ◽  
Xiaohu Dai ◽  
Bin Dong ◽  
Lingling Dai

High inorganic suspended solids (ISS) content of sludge in many areas (especially with combined sewage systems) results in low VS/TS (volatile solids, VS; total solids, TS) levels and raises concerns about its effect on anaerobic digestion. The performances of sludge anaerobic digestion with different feeding VS/TS levels as well as the effect of ISS content on the anaerobic degradation process were investigated in completely stirred tank reactors by semi-continuous and batch experiments. In semi-continuous experiment with sludge at VS/TS of 61.4%, 45.0, 30.0% and 15.0%, biogas yield, VS reduction and methane content decreased logarithmically with the feeding VS/TS decreasing; slightly higher volatile fatty acid concentration was observed at VS/TS 15%. Results of the batch experiments suggested that acetogenesis and methanogenesis are obviously affected by high ISS addition, while hydrolysis is less affected. The retardment of substrate conversion rate is probably attributed to decreased mass transfer efficiency at high ISS content.


2020 ◽  
Vol 19 ◽  
pp. 100948 ◽  
Author(s):  
Qunpeng Cheng ◽  
Chenxi Xu ◽  
Wenwen Huang ◽  
Meng Jiang ◽  
Juntao Yan ◽  
...  

1995 ◽  
Vol 32 (12) ◽  
pp. 73-81 ◽  
Author(s):  
R. Cintoli ◽  
B. Di Sabatino ◽  
L. Galeotti ◽  
G. Bruno

A treatment plant of pre-screened piggery wastewater is tested at lab-scale using Italian zeolites (of very low cost) to strongly reduce the NH4+ from 1500 mg/l to 300–400 mg/l and anaerobic digestion in UASB and UASB-AF reactors to remove organics. The ion-exchange pre-treatment by zeolite leads to a reduction of toxicity of wastewater towards anaerobic microbial population and improves the UASB and UASB-AF reactors yields in organics reduction and gas production. The laboratory plant in this configuration reaches a COD removal range of 60–80% and a good reduction of effluent nutrients concentration whereas the use of a anaerobic second stage gave modest results in organics removal because of low applied organic load. A treatment cycle composed of a pre-treatment with zeolites, anaerobic digestion in UASB-AF reactor and a final treatment in an aerobic activated sludge plant is giving very good preliminary results.


2002 ◽  
Vol 45 (10) ◽  
pp. 213-218 ◽  
Author(s):  
I. Angelidaki ◽  
B.K. Ahring ◽  
H. Deng ◽  
J.E. Schmidt

Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process. Furthermore, it was found that methane productions rates during digestion of either swine manure alone or OME alone were much lower than the rates achieved when OME and manure were digested together. Admixing OME with manure at a concentration of 5 to 10% OME resulted in the highest methane production rates. Using upflow anaerobic sludge blanket (UASB) reactors, it was shown that codigestion of OME with swine manure (up to 50% OME) was successful with a COD reduction up to 75%. The process was adapted for degradation of OME with stepwise increase of the OME load to the UASB reactor. The results showed that the high content of ammonia in swine manure, together with content of other nutrients, make it possible to degrade OME without addition of external alkalinity and without addition of external nitrogen source. Anaerobic treatment of OME in UASB reactors resulted in reduction of simple phenolic compounds such as mequinol, phenyl ethyl alcohol and ethyl methyl phenol. After anaerobic treatment the concentration of these compounds was reduced between 75 and 100%. However, the concentration of some degradation products such as methyl phenol and ethyl phenol were detected in significantly higher concentrations after treatment, indicating that the process has to be further optimised to achieve satisfactory removal of all xenobiotic compounds.


2007 ◽  
Vol 45 (1) ◽  
pp. 5-14 ◽  
Author(s):  
K. Anjaneyulu ◽  
S. J. Tarwadi ◽  
D. J. Mehta

2006 ◽  
Vol 53 (8) ◽  
pp. 109-117 ◽  
Author(s):  
M. Carballa ◽  
F. Omil ◽  
A.C. Alder ◽  
J.M. Lema

Many novel treatment technologies, usually representing a pre-treatment prior to the biological degradation process, have been developed in order to improve the recycling and reuse of sewage sludge. Among all the methods available, a chemical (alkaline) and a thermal treatment have been considered in this study. The behaviour of 13 substances belonging to different therapeutic classes (musks, tranquillisers, antiepileptic, anti-inflammatories, antibiotics, X-ray contrast media and estrogens) has been studied during the anaerobic digestion of sewage sludge combined with these pre-treatments (advanced operation) in comparison with the conventional process. Two parameters have been analysed: the temperature (mesophilic and thermophilic conditions) and the sludge retention time. While organic matter solubilization was higher with the alkaline process (55–80%), no difference between both pre-treatments was observed concerning volatile solids solubilization (up to 20%). The removal efficiencies of solids and organic matter during anaerobic digestion ranged from 40–70% and 45–75%, respectively. The higher removal efficiencies of pharmaceuticals and personal care products were achieved for the antibiotics, Naproxen and the natural estrogens (>80%). For the other compounds, the values were in the range 20–70%, except for Carbamazepine, which was not removed at any condition tested.


Sign in / Sign up

Export Citation Format

Share Document