Alterations of hemorheological parameters and tubulin content in erythrocytes from diabetic subjects

Author(s):  
Ayelén D. Nigra ◽  
Noelia E. Monesterolo ◽  
Juan F. Rivelli ◽  
Marina R. Amaiden ◽  
Alexis N. Campetelli ◽  
...  
Keyword(s):  
1977 ◽  
Vol 74 (2) ◽  
pp. 351-357 ◽  
Author(s):  
D G Pipeleers ◽  
M A Pipeleers-Marichal ◽  
D M Kipnis

Polymerized and depolymerized forms of tubulin were measured in rat and mouse liver, rat islets, human lymphocytes, and platelets. The percent of the total tubulin present in the polymerized form varied from 30.3 +/- 1.5% in the liver of the fed rat to 89.2 +/- 0.2% in human platelets. Fasting decreased the total tubulin and to a greater extent the polymerized form of tubulin in both rat and mouse liver. Glucose feeding increased the polymerized tubulin without affecting the total tubulin content in rat liver. Phytohemagglutinin-stimulated lymphocytes exhibited at least a three-fold increase in total tubulin (expressed in terms of DNA content), which during the initial 48 h of incubation was accounted for in toto by an increase in polymerized tubulin. It is suggested that the lectin not only accelerates tubulin synthesis but also stimulated the polymerization process. Storage of platelets at 4 degrees C for 6 days resulted in a marked decrease in total tubulin and an even greater reduction in the polymerized form. It is concluded that both the total tubulin content and its degree of polymerization can be modulated independently by a wide variety of physiological factors.


1982 ◽  
Vol 207 (3) ◽  
pp. 535-539 ◽  
Author(s):  
H Atkins ◽  
P J Anderson

Double labelling and the isolation of actin- and tubulin-derived peptides were used to determine the amounts of these proteins in peripheral lymphocytes from normal donors and from patients with chronic lymphocytic leukaemia. As a precaution against proteolysis, samples were boiled before assay. The actin content of chronic-lymphocytic-leukaemia (CLL) lymphocytes was 8.1 +/- 2.1% of total protein, which was lower (P less than 0.05) than the amount (12.8 +/- 3.0%) of actin found in normal lymphocytes. The tubulin content of CLL lymphocytes was 4.4 +/- 1.5% of total protein, which was also significantly less (P less than 0.05) than that of normal lymphocytes, which was found to be 6.1 +/- 1.1%.


1979 ◽  
Vol 82 (2) ◽  
pp. 572-576 ◽  
Author(s):  
J H Eichhorn ◽  
B Peterkofsky

Microtubules in normal and transformed BALB 3T3 cells were preserved in a stabilizing medium and measured by a [3H]colchicine-binding tubulin assay, and compared to total cellular tubulin measured under nonstabilizing conditions. Essentially no change in tubulin or microtubule content was seen with changes in cell density or with changes in cellular morphology at various stages of growth of normal or transformed cells or induced by dibutyryl cAMP treatment of transformed cells. Of five cell lines transformed by a variety of agents, four had a significantly higher total tubulin content than untransformed 3T3 cells and all of them had an increased microtubule content. None of the transformed lines had a lower fraction of tubulin recoverable as sedimentable microtubules compared to untransformed cells, and in three of them this fraction was significantly higher. These results establish that microtubules are present in transformed cells to at least the extent (if not greater) than in normal cells but that there are variations in the total amount of tubulin and microtubules as well as the fraction of the total tubulin present as microtubules which are not strictly correlated with transformation or cell morphology.


1988 ◽  
Vol 90 (4) ◽  
pp. 577-589 ◽  
Author(s):  
R. Sasse ◽  
K. Gull

We have used specific monoclonal antibodies to facilitate a study of acetylated and tyrosinated alpha-tubulin in the microtubule (MT) arrays in the Trypanosoma brucei cell. Acetylated alpha-tubulin is not solely located in the stable microtubular arrays but is present even in the ephemeral microtubules of the mitotic spindle. Moreover, there is a uniform distribution of this isoform in all arrays. Studies of flagella complexes show that acetylation is concomitant with assembly of MTs. There is no subsequent major modulation in the content of acetylated alpha-tubulin in MTs. Conversely, polymerizing flagellar MTs have a high tyrosinated alpha-tubulin content, which is subsequently reduced to a basal level at a discrete point in the cell cycle. The MTs of the intranuclear mitotic spindle appear never to contain tyrosinated alpha-tubulin, suggesting that they are actually constructed of detyrosinated alpha-tubulin or that detyrosination is extremely rapid at this time in the cell cycle. T. brucei therefore, represents a cell type with extremely active mechanisms for the post-translational modification of alpha-tubulin. Our analyses of the timing of acquisition and modulation in relation to MT construction in T. brucei, suggest that acetylation and detyrosination of alpha-tubulin are two independently regulated post-translational modifications, that are not uniquely associated with particular subsets of MTs of defined lability, position or function. Post-assembly detyrosination of alpha-tubulin may provide a mechanism whereby the cell could discriminate between new and old MTs, during construction of the cytoskeleton through the cell cycle. However, we also suggest that continuation of detyrosination, allows the cell, at cell division, to partition into daughter cells two equivalent sets of cytoskeletal MTs.


1992 ◽  
Vol 119 (1) ◽  
pp. 171-178 ◽  
Author(s):  
P W Baas ◽  
H C Joshi

Axons and dendrites contain dense microtubule (MT) assays that are not attached to a traditional MT nucleating structure such as the centrosome. Nevertheless, the MTs within these neurites are highly organized with respect to their polarity, and consist of a regular 13-protofilament lattice, the two known characteristics of MTs nucleated at the centrosome. These observations suggest either that axonal and dendritic MTs arise at the centrosome, or that they are nucleated locally, following a redistribution of MT nucleating material from the centrosome during neuronal development. To begin distinguishing between these possibilities, we have determined the distribution of gamma-tubulin within cultured sympathetic neurons. gamma-tubulin, a newly discovered protein which is specifically localized to the pericentriolar region of nonneuronal cells (Zheng, Y., M. K. Jung, and B. R. Oakley. 1991. Cell. 65:817-823; Stearns, T., L. Evans, and M. Kirschner. 1991. Cell. 65:825-836), has been shown to play a critical role in MT nucleation in vivo (Joshi, H. C., M. J. Palacios, L. McNamara, and D. W. Cleveland. 1992. Nature (Lond.). 356:80-83). Because the gamma-tubulin content of individual cells is extremely low, we relied principally on the high degree of resolution and sensitivity afforded by immunoelectron microscopy. Our studies reveal that, like the situation in nonneuronal cells, gamma-tubulin is restricted to the pericentriolar region of the neuron. Furthermore, serial reconstruction analyses indicate that the minus ends of MTs in both axons and dendrites are free of gamma-tubulin immunoreactivity. The absence of gamma-tubulin from the axon was confirmed by immunoblot analyses of pure axonal fractions obtained from explant cultures. The observation that gamma-tubulin is restricted to the pericentriolar region of the neuron provides compelling support for the notion that MTs destined for axons and dendrites are nucleated at the centrosome, and subsequently released for translocation into these neurites.


2018 ◽  
Vol 51 (1) ◽  
pp. 375-392 ◽  
Author(s):  
Maria A. Usik ◽  
Irina V. Ogneva

Background/Aims: Changes in the external mechanical field result in cytoskeleton reorganization and the formation of adaptive patterns in different types of cells, including somatic cells and sex cells. The aim of this research was to study the protein and mRNA content of cytoskeletal and sperm-specific genes in the sperm and testis cells of mice. Methods: Mice were subjected to 30 days of antiorthostatic suspension to simulate weightlessness, followed by 12 h of recovery, while receiving essential phospholipids at a dosage of 500 mg/kg/day (30HSE and 30HSE+12h groups) or a similar dosage of a placebo (30HS and 30HS+12h groups). Accordingly, reference groups (CE group and C group) were formed. The total number and the percentage of motile spermatozoa were calculated using a Makler chamber. To analyze the number of viable spermatozoa and the permeability of their membranes, eosin staining was used as well as Diff-Quick for a morphological evaluation. Relative protein and mRNA content was estimated in a western blot and quantitative PCR assay, respectively. Results: The relative protein expression levels of actin (beta and gamma) and two alpha-actinin isoforms (1 and 4) remained constant in the sperm of all study groups, except for the 30HS+12h group, where the alpha-actinin-4 level was 13% higher than in the reference group (p < 0.1). In the testis cells, the relative actin isoform content was equivalent to that in the spermatozoa. However, in the testis cells, the ACTN1 mRNA content was 17% higher in the 30HS group than in the C group (p < 0.05), and decreased after 12 h of recovery. In contrast, the ACTN4 mRNA content was 20% lower in the 30HS group than in the reference group (p < 0.05) and increased after the 12-h recovery period. At the same time, in the group administered the essential phospholipids, the relative ACTN1 and ACTN4 mRNA content did not differ from those of the reference group. The relative beta-tubulin content was similar in the reference C group and the reference CE group, which was administered the essential phospholipids. In the 30HS and 30HS+12h groups, the beta-tubulin content decreased by 19% and 22% (p < 0.05), respectively, and they also decreased in the groups administered the essential phospholipids (30HSE and 30HSE+12h groups, by 27% and 33%, respectively, p < 0.05). In the testis tissue, the relative tubulin content did not change in any of the experimental groups. At the same time, the relative mRNA content of the genes encoding the studied cytoskeletal proteins increased, which may indicate the protein content was regulated mainly at the translational level. Conclusion: The spermogram parameters and the content of the sperm-specific proteins and the associated mRNAs revealed a decrease in the number of mature spermatozoa in mice suspended under conditions of weightlessness. Moreover, the decrease was prevented by the administration of essential phospholipids.


1978 ◽  
Vol 77 (3) ◽  
pp. 735-742 ◽  
Author(s):  
EP Reaven ◽  
GM Reaven

The fact that colchicines inhibits hepatic secretion of very low density lipoprotein (VLDL) particles has been interpreted to mean that microtubules are involved in hepatic VLDL secretion. To further define this relationship, we have attempted to see if changes in hepatic VLDL secretion are associated with changes in hepatocyte microtubule or tubulin content. Accordingly, hepatic secretion of VLDL was increased in rats, and the hepatocyte content of both microtubules (using quantitative morphometric methods) and tubulin (using a time-decay colchicine binding assay) was determined. In acute experiments, VLDL secretion was increased by perfusion of isolated rat livers for 2 h with varying concentrations of free fatty acids (FFA). Results indicate that hepatic VLDL triglyceride (TG) secretion at perfusate FFA levels of 0.7 μEq/ml is threefold greater (P &lt; 0.01) than when livers are perfused without added FFA. However, no differences are observed in the content of microtubules in these livers: specifically, microtubules occupy 0.029 percent of hepatocyte cytoplasm in livers perfused without FFA and 0.030 percent of cytoplasm in livers perfused with FFA. In chronic experiments, rats were fed for 1 wk with either standard rat chow or a hyperlipidemic (sucrose/lard) diet. With the experimental diet, plasma triglyceride levels increase threefold over controls, and liver VLDL-TG production, as determined by [(3)H]glycerol turnover studies, is 55 percent greater (P &lt; 0.01) than controls. However, microtubules occupy 0.027 percent of the cytoplasm of hepatocyte cytoplasm whether rats are on standard or hyperlipidemic diets. Furthermore, the tubulin content of isolated hepatocytes does change, and represents 1 percent of hepatocyte soluble protein, irrespective of diet. These results suggest that increases in hepatic VLDL secretion can occur without any demonstrable change in hepatocyte assembled microtubule or tubulin content, and raise questions as to the role played by microtubules in hepatic VLDL secretion.


Sign in / Sign up

Export Citation Format

Share Document