scholarly journals Keratin intermediate filaments in the colon: guardians of epithelial homeostasis

Author(s):  
Lauri Polari ◽  
Catharina M. Alam ◽  
Joel H. Nyström ◽  
Taina Heikkilä ◽  
Mina Tayyab ◽  
...  
2016 ◽  
Vol 27 (18) ◽  
pp. 2807-2810 ◽  
Author(s):  
Pierre A. Coulombe

In 1991, a set of transgenic mouse studies took the fields of cell biology and dermatology by storm in providing the first credible evidence that keratin intermediate filaments play a unique and essential role in the structural and mechanical support in keratinocytes of the epidermis. Moreover, these studies intimated that mutations altering the primary structure and function of keratin filaments underlie genetic diseases typified by cellular fragility. This Retrospective on how these studies came to be is offered as a means to highlight the 25th anniversary of these discoveries.


2002 ◽  
Vol 137 (1-2) ◽  
pp. 109-118 ◽  
Author(s):  
Norman R. Watts ◽  
Leslie N. Jones ◽  
Naiqian Cheng ◽  
Joseph S. Wall ◽  
David A.D. Parry ◽  
...  

2011 ◽  
Vol 194 (5) ◽  
pp. 669-678 ◽  
Author(s):  
Reinhard Windoffer ◽  
Michael Beil ◽  
Thomas M. Magin ◽  
Rudolf E. Leube

Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function.


2001 ◽  
Vol 153 (3) ◽  
pp. 503-516 ◽  
Author(s):  
Kyeong Han Yoon ◽  
Miri Yoon ◽  
Robert D. Moir ◽  
Satya Khuon ◽  
Frederick W. Flitney ◽  
...  

The properties of keratin intermediate filaments (IFs) have been studied after transfection with green fluorescent protein (GFP)-tagged K18 and/or K8 (type I/II IF proteins). GFP-K8 and -K18 become incorporated into tonofibrils, which are comprised of bundles of keratin IFs. These tonofibrils exhibit a remarkably wide range of motile and dynamic activities. Fluorescence recovery after photobleaching (FRAP) analyses show that they recover their fluorescence slowly with a recovery t1/2 of ∼100 min. The movements of bleach zones during recovery show that closely spaced tonofibrils (<1 μm apart) often move at different rates and in different directions. Individual tonofibrils frequently change their shapes, and in some cases these changes appear as propagated waveforms along their long axes. In addition, short fibrils, termed keratin squiggles, are seen at the cell periphery where they move mainly towards the cell center. The motile properties of keratin IFs are also compared with those of type III IFs (vimentin) in PtK2 cells. Intriguingly, the dynamic properties of keratin tonofibrils and squiggles are dramatically different from those of vimentin fibrils and squiggles within the same cytoplasmic regions. This suggests that there are different factors regulating the dynamic properties of different types of IFs within the same cytoplasmic regions.


Sign in / Sign up

Export Citation Format

Share Document