Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells

Biomaterials ◽  
2014 ◽  
Vol 35 (24) ◽  
pp. 6351-6358 ◽  
Author(s):  
Anne Schellenberg ◽  
Sylvia Joussen ◽  
Kristin Moser ◽  
Nico Hampe ◽  
Nils Hersch ◽  
...  
Aging ◽  
2011 ◽  
Vol 3 (9) ◽  
pp. 873-888 ◽  
Author(s):  
Anne Schellenberg ◽  
Qiong Lin ◽  
Herdit Schüler ◽  
Carmen M. Koch ◽  
Sylvia Joussen ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meiling Zhou ◽  
Jiaoya Xi ◽  
Yaofeng Cheng ◽  
Denglong Sun ◽  
Peng Shu ◽  
...  

Abstract Background Cellular therapy based on mesenchymal stem cells (MSCs) is a promising novel therapeutic strategy for the osteonecrosis of the femoral head (ONFH), which is gradually becoming popular, particularly for early-stage ONFH. Nonetheless, the MSC-based therapy is challenging due to certain limitations, such as limited self-renewal capability of cells, availability of donor MSCs, and the costs involved in donor screening. As an alternative approach, MSCs derived from induced pluripotent stem cells (iPSCs), which may lead to further standardized-cell preparations. Methods In the present study, the bone marrow samples of patients with ONFH (n = 16) and patients with the fracture of the femoral neck (n = 12) were obtained during operation. The bone marrow-derived MSCs (BMSCs) were isolated by density gradient centrifugation. BMSCs of ONFH patients (ONFH-BMSCs) were reprogrammed to iPSCs, following which the iPSCs were differentiated into MSCs (iPSC-MSCs). Forty adult male rats were randomly divided into following groups (n = 10 per group): (a) normal control group, (b) methylprednisolone (MPS) group, (c) MPS + BMSCs treated group, and (d) MPS + iPSC-MSC-treated group. Eight weeks after the establishment of the ONFH model, rats in BMSC-treated group and iPSC-MSC-treated group were implanted with BMSCs and iPSC-MSCs through intrabone marrow injection. Bone repair of the femoral head necrosis area was analyzed after MSC transplantation. Results The morphology, immunophenotype, in vitro differentiation potential, and DNA methylation patterns of iPSC-MSCs were similar to those of normal BMSCs, while the proliferation of iPSC-MSCs was higher and no tumorigenic ability was exhibited. Furthermore, comparing the effectiveness of iPSC-MSCs and the normal BMSCs in an ONFH rat model revealed that the iPSC-MSCs was equivalent to normal BMSCs in preventing bone loss and promoting bone repair in the necrosis region of the femoral head. Conclusion Reprogramming can reverse the abnormal proliferation, differentiation, and DNA methylation patterns of ONFH-BMSCs. Transplantation of iPSC-MSCs could effectively promote bone repair and angiogenesis in the necrosis area of the femoral head.


PLoS ONE ◽  
2008 ◽  
Vol 3 (5) ◽  
pp. e2213 ◽  
Author(s):  
Wolfgang Wagner ◽  
Patrick Horn ◽  
Mirco Castoldi ◽  
Anke Diehlmann ◽  
Simone Bork ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Fernanda Vieira Paladino ◽  
Luiz Roberto Sardinha ◽  
Carla Azevedo Piccinato ◽  
Anna Carla Goldberg

Wharton’s jelly mesenchymal stem cells (WJ-MSC) exhibit immunomodulatory effects on T cell response. WJ-MSC are easy to collect, process, and proliferate rapidly in culture, but information on the variability of individual cell samples impacting upon in vitro expansion, immunomodulatory potential, and aging processes is still lacking. We propose to evaluate the immunomodulatory cytokine profile and capacity to inhibit T cell proliferation of WJ-MSC progressing to replicative senescence in order to analyze if expected responses are affected. Our results show that the gene expression of immunomodulatory molecules varied among samples with no specific pattern present. In coculture, all WJ-MSC were capable of inhibiting mitogen-activated CD3+ T cell proliferation, although to different degrees, and each PBMC responded with a different level of inhibition. Thus, we suggest that each WJ-MSC displays unique behavior, differing in patterns of cytokine mRNA expression and immunomodulatory capacity. We believe that variability between samples may play a role in the effectiveness of WJ-MSC employed therapeutically.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yangyang Cao ◽  
Haoqing Yang ◽  
Luyuan Jin ◽  
Juan Du ◽  
Zhipeng Fan

Bone marrow mesenchymal stem cells (BMSCs) nowadays are regarded as promising candidates in cell-based therapy for the regeneration of damaged bone tissues that are either incurable or intractable due to the insufficiency of current therapies. Recent studies suggest that BMSCs differentiate into osteoblasts, and that this differentiation is regulated by some specific patterns of epigenetic modifications, such as DNA methylation. However, the potential role of DNA methylation modification in BMSC osteogenic differentiation is unclear. In this study, we performed a genome-wide study of DNA methylation between the noninduced and induced osteogenic differentiation of BMSCs at day 7. We found that the majority of cytosines in a CpG context were methylated in induced BMSCs. Our results also revealed that, along with the induced osteogenic differentiation in BMSCs, the average genomic methylation levels and CpG methylation in transcriptional factor regions (TFs) were increased, the CpG methylation level of various genomic elements was mainly in the medium-high methylation section, and CpG methylation levels in the repeat element had highly methylated levels. The GO analysis of differentially methylated region- (DMR-) associated genes (DMGs) showed that GO terms, including cytoskeletal protein binding (included in Molecular Function GO terms), skeletal development (included in Biological Process GO terms), mesenchymal cell differentiation (included in Biological Process GO terms), and stem cell differentiation (included in Biological Process), were enriched in the hypermethylated DMGs. Then, the KEGG analysis results showed that the WNT pathway, inositol phosphate metabolism pathway, and cocaine addiction pathway were more correlative with the DMRs during the induced osteogenic differentiation in BMSCs. In conclusion, this study revealed the difference of methylated levels during the noninduced and induced osteogenic differentiation of BMSCs and provided useful information for future works to characterize the important function of epigenetic mechanisms on BMSCs’ differentiation.


Epigenomics ◽  
2021 ◽  
Author(s):  
Sonal Saxena ◽  
Sumana Choudhury ◽  
Pranay Amruth Maroju ◽  
Anuhya Anne ◽  
Lov Kumar ◽  
...  

Aim: To study the effects of DNMT1 overexpression on transcript levels of genes dysregulated in schizophrenia and on genome-wide methylation patterns. Materials & methods: Transcriptome and DNA methylome comparisons were made between R1 (wild-type) and Dnmt1tet/tet mouse embryonic stem cells and neurons overexpressing DNMT1. Genes dysregulated in both Dnmt1tet/tet cells and schizophrenia patients were studied further. Results & conclusions: About 50% of dysregulated genes in patients also showed altered transcript levels in Tet/Tet neurons in a DNA methylation-independent manner. These neurons unexpectedly showed genome-wide hypomethylation, increased transcript levels of Tet1 and Apobec 1-3 genes and increased activity and copy number of LINE-1 elements. The observed similarities between Tet/Tet neurons and schizophrenia brain samples reinforce DNMT1 overexpression as a risk factor.


Sign in / Sign up

Export Citation Format

Share Document