Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair

Biomaterials ◽  
2016 ◽  
Vol 90 ◽  
pp. 85-115 ◽  
Author(s):  
Muhammad Shafiq ◽  
Youngmee Jung ◽  
Soo Hyun Kim
2021 ◽  
Vol 22 (3) ◽  
pp. 1201
Author(s):  
Hsuan Peng ◽  
Kazuhiro Shindo ◽  
Renée R. Donahue ◽  
Ahmed Abdel-Latif

Stem cell-based cardiac therapies have been extensively studied in recent years. However, the efficacy of cell delivery, engraftment, and differentiation post-transplant remain continuous challenges and represent opportunities to further refine our current strategies. Despite limited long-term cardiac retention, stem cell treatment leads to sustained cardiac benefit following myocardial infarction (MI). This review summarizes the current knowledge on stem cell based cardiac immunomodulation by highlighting the cellular and molecular mechanisms of different immune responses to mesenchymal stem cells (MSCs) and their secretory factors. This review also addresses the clinical evidence in the field.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1703
Author(s):  
Małgorzata Mrugacz ◽  
Anna Bryl ◽  
Mariusz Falkowski ◽  
Katarzyna Zorena

Integrins belong to a group of cell adhesion molecules (CAMs) which is a large group of membrane-bound proteins. They are responsible for cell attachment to the extracellular matrix (ECM) and signal transduction from the ECM to the cells. Integrins take part in many other biological activities, such as extravasation, cell-to-cell adhesion, migration, cytokine activation and release, and act as receptors for some viruses, including severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). They play a pivotal role in cell proliferation, migration, apoptosis, tissue repair and are involved in the processes that are crucial to infection, inflammation and angiogenesis. Integrins have an important part in normal development and tissue homeostasis, and also in the development of pathological processes in the eye. This review presents the available evidence from human and animal research into integrin structure, classification, function and their role in inflammation, infection and angiogenesis in ocular diseases. Integrin receptors and ligands are clinically interesting and may be promising as new therapeutic targets in the treatment of some eye disorders.


2017 ◽  
Vol 23 (S1) ◽  
pp. 1142-1143 ◽  
Author(s):  
Yue Zhuo ◽  
Ji Sun Choi ◽  
Thibault Marin ◽  
Hojeong Yu ◽  
Brendan A. Harley ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gabriel Peinkofer ◽  
Martina Maass ◽  
Kurt Pfannkuche ◽  
Agapios Sachinidis ◽  
Stephan Baldus ◽  
...  

Abstract Background Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) are regarded as promising cell type for cardiac cell replacement therapy, but it is not known whether the developmental stage influences their persistence and functional integration in the host tissue, which are crucial for a long-term therapeutic benefit. To investigate this, we first tested the cell adhesion capability of murine iPSC-CM in vitro at three different time points during the differentiation process and then examined cell persistence and quality of electrical integration in the infarcted myocardium in vivo. Methods To test cell adhesion capabilities in vitro, iPSC-CM were seeded on fibronectin-coated cell culture dishes and decellularized ventricular extracellular matrix (ECM) scaffolds. After fixed periods of time, stably attached cells were quantified. For in vivo experiments, murine iPSC-CM expressing enhanced green fluorescent protein was injected into infarcted hearts of adult mice. After 6–7 days, viable ventricular tissue slices were prepared to enable action potential (AP) recordings in transplanted iPSC-CM and surrounding host cardiomyocytes. Afterwards, slices were lysed, and genomic DNA was prepared, which was then used for quantitative real-time PCR to evaluate grafted iPSC-CM count. Results The in vitro results indicated differences in cell adhesion capabilities between day 14, day 16, and day 18 iPSC-CM with day 14 iPSC-CM showing the largest number of attached cells on ECM scaffolds. After intramyocardial injection, day 14 iPSC-CM showed a significant higher cell count compared to day 16 iPSC-CM. AP measurements revealed no significant difference in the quality of electrical integration and only minor differences in AP properties between d14 and d16 iPSC-CM. Conclusion The results of the present study demonstrate that the developmental stage at the time of transplantation is crucial for the persistence of transplanted iPSC-CM. iPSC-CM at day 14 of differentiation showed the highest persistence after transplantation in vivo, which may be explained by a higher capability to adhere to the extracellular matrix.


2015 ◽  
Vol 7 (4) ◽  
pp. 435-446 ◽  
Author(s):  
Sebastián L. Vega ◽  
Anandika Dhaliwal ◽  
Varun Arvind ◽  
Parth J. Patel ◽  
Nick R. M. Beijer ◽  
...  

Timely classification of stem cell lineage commitment in response to cell–microenvironment interactions using high content analysis of sub-nuclear protein organization.


Langmuir ◽  
2009 ◽  
Vol 25 (10) ◽  
pp. 5737-5746 ◽  
Author(s):  
Gregory A. Hudalla ◽  
William L. Murphy

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Alice C. Taylor ◽  
Citlali Helenes González ◽  
Benjamin S. Miller ◽  
Robert J. Edgington ◽  
Patrizia Ferretti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document