Solar-driven steam-based gasification of sugarcane bagasse in a combined drop-tube and fixed-bed reactor – Thermodynamic, kinetic, and experimental analyses

2013 ◽  
Vol 52 ◽  
pp. 173-183 ◽  
Author(s):  
Michael Kruesi ◽  
Zoran R. Jovanovic ◽  
Elena C. dos Santos ◽  
Hyung Chul Yoon ◽  
Aldo Steinfeld
Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1274 ◽  
Author(s):  
Daryl Rafael Osuna-Laveaga ◽  
Octavio García-Depraect ◽  
Ramiro Vallejo-Rodríguez ◽  
Alberto López-López ◽  
Elizabeth León-Becerril

The combined effects of three key ozonation process parameters on the integrated ozonation-enzymatic hydrolysis pretreatment of sugarcane bagasse (SCB) were investigated, with emphasis on the relationship between sugar release and ozone consumption. A lab-scale fixed bed reactor was employed for ozonation at varying ozone doses (50, 75 and 100 mg O3/g SCB), particle sizes (420, 710 and 1000 µm) and moisture contents (30, 45 and 60% w/w) in multifactorial experiments, keeping a residence time of 30 min. The ozonated SCB showed a reduction in the content of acid-insoluble lignin from 26.6 down to 19.1% w/w, while those of cellulose and hemicellulose were retained above 45.5 and 13.6% w/w, with recoveries of 100–89.9 and 83.5–72.7%, respectively. Ozone-assisted enzymatic hydrolysis allowed attaining glucose and xylose yields as high as 45.0 and 37.8%, respectively. The sugars released/ozone expended ratio ranged between 2.3 and 5.7 g sugars/g O3, being the higher value achieved with an applied ozone input of 50 mg O3/g SCB and SCB with 420 µm particle size and 60% moisture. Such operating conditions led to efficient ozone utilization (<2% unreacted ozone) with a yield of 0.29 g sugars/g SCB. Overall, the amount of sugars released relative to the ozone consumed was improved, entailing an estimated cost of ozonation of USD 34.7/ton of SCB, which could enhance the profitability of the process.


2021 ◽  
Vol 1034 ◽  
pp. 199-205
Author(s):  
Dewi Selvia Fardhyanti ◽  
Megawati ◽  
Haniif Prasetiawan ◽  
Noniek Nabuasa ◽  
Mohammad Arik Ardianta

Biomass is a source of alternative energy that is environmentally friendly and very promising as one of the sources of renewable energy at present. The best candidate for the biomass waste for pyrolysis raw material is sugarcane bagasse. The sugarcane bagasse is a fibrous residue that is produced after crushing sugarcane for its extraction. Sugarcane bagasse is very potential to produce bio-oil through a pyrolysis process. The advantage of utilizing sugarcane bagasse is to reduce the amount of waste volume. Pyrolysis is a simple thermochemical conversion that transforms biomass with the near absence of absence of oxygen to produce fuel. Experiments were carried out on the fixed bed reactor. The analysis was carried out over a temperature range of 300-500 °C under atmospheric conditions. Products that are usually obtained from the pyrolysis process are bio-oil, char, and gas. Product analysis was performed using Gas Chromatography (GC) and Mass Spectrometry (MS) analysis. This research is aimed to study the kinetics of the sugarcane bagasse pyrolysis process to produce bio-oil. Three different models were proposed for the kinetic study and it was found that model III gave the best prediction on the calculation of pyrolysis process. From the calculation results, kinetic parameters which include activation energy (Ea) and the k factor (A) at a temperature of 300 °C is 2.4730 kJ/mol and 0.000335 s-1, at a temperature of 400 °C is 3, 2718 kJ/mol and 0.000563 s-1, and at a temperature of 500 °C is 4.8942 kJ/mol and 0.0009 s-1.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
N. Sirirermrux ◽  
K. Laohalidanond ◽  
S. Kerdsuwan

Surrogate municipal solid waste (MSW) has been prepared to represent high plastic content waste with low fixed carbon in order to be utilized for feedstock for the gasification and pyrolysis. The major components are plastic (PE and PP), food and kitchen waste, and paper, whereas the minor components are textile, rubber, and biomass. Reactions were conducted in small drop tube fixed bed reactor with isothermal reaction temperature at 700, 800, and 900 °C. Steam was supplied as the gasifying agent for the main purpose of producing hydrogen-rich gas. Pyrolysis was also conducted at the same condition to observe the characteristic differences. Producer gas, including H2, CH4, and CO, of both the reactions was a function of the temperature, whereas CO2 showed a reversed trend when the reaction temperature was increased. Simple kinetic models of those gaseous formations were studied for describing the related parameters. It is challenging to determine the kinetics of the individual gas generation while most kinetic studies have focused on mass deterioration. The commonly used kinetic model of nucleation of Avrami–Erofe'ev (A2) could well predict the mechanism of the gas formation of gasification. In parallel, the pyrolysis conformed to the A3 model due to the slower rate of char and tar decomposition when the gasifying agent was absent. The activation energy of each gaseous species and the fitting of experimental data with the selected models are examined in this study.


2020 ◽  
Vol 7 (3) ◽  
pp. 504-515 ◽  
Author(s):  
Heena Dhawan ◽  
Rohit Kumar ◽  
Sreedevi Upadhyayula ◽  
K. K. Pant ◽  
D. K. Sharma

Abstract Coal gasification has already been extensively studied earlier under varying conditions of steam, CO2, O2, inert conditions. Belbaid coal and its e, N and NMP-DETA SCC products recovered through organo-refining under milder ambient pressure conditions were subjected to CO2-gasification in a fixed bed reactor under varying conditions. CO2 being an inert gas becomes the most challenging to be utilized during the gasification process. The SCCs showed better CO2-gasification reactivity than the raw Belbaid coal at 900 °C. The use of the catalyst K2CO3 tremendously increased the gasification reactivity for both raw coal and the SCCs. The use of sugarcane bagasse for CO2-gasification along with raw coal as well as with residual coal was also studied. Gasification under CO2 atmosphere conditions was used to structurally understand the coals as the coal structure gets loosened after extraction.


2021 ◽  
Vol 39 ◽  
pp. 75-84
Author(s):  
Ahmed Gaber H. Saif ◽  
Seddik S. Wahid ◽  
Mohamed R.O. Ali

Sugarcane bagasse pyrolysis in a fixed-bed reactor has been studied. The Pyrolytic oil and char obtained were characterized to determine their feasibility as fuels and chemical reagent in other processes. The runs were performed under the following conditions: temperature from 350°C–600°C, sample size of 0.5–1 mm, and an inert gas flow rate of 200 cm3/min. The study aimed to characterize the obtained oil and char to determine their feasibility as source of energy and chemical product. The product has been characterized by different techniques including gas chromatography–mass spectrometry (GC–MS), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). The obtained bio-oil exhibited a molecular formula of CH1.03O0.28 N0.012 and a higher heating value (HHV) of 27.68 MJ/kg. These results indicated that it could be used after refining as a source of fuel and produced a chemical product. In addition, the obtained biochar (HHV = 31.53 MJ/kg) can be used as a solid fuel.


2017 ◽  
Vol 95 (12) ◽  
pp. 2249-2257 ◽  
Author(s):  
Edvan Vinícius Gonçalves ◽  
Carlos Teodoro ◽  
Fernanda Lini Seixas ◽  
Edmilson Antonio Canesin ◽  
Mara Heloisa Neves Olsen Scaliante ◽  
...  

2016 ◽  
Vol 78 (6-6) ◽  
Author(s):  
Teerayut Bunma ◽  
Prapan Kuchonthara

In this work, the hydrogen production during biomass steam pyrolysis-gasification with a combined catalysts and sorbent. The biomass sample was originated from sugarcane leaves. The combined catalyst and sorbent (NiO-MgO-CaO/γ-Al2O3) was prepared by an excess-solution impregnation method and the property of fresh and used catalysts was characterized using XRD. The prepared sorbent-catalysts promoted both tar reforming and CO2 absorption. High hydrogen production was achieved due to the enhanced water–gas shift reaction by the latter. The pyrolysis-gasification experiments were conducted in a drop tube two-stage fixed bed reactor. The effect of operating parameters such as the amount of MgO (3, 5 and 10 wt.%) and CaO (3, 5 and 10 wt.%) on supported catalysts and the gasification temperatures (600, 700 and 800 oC) were investigated. It was found that the highest hydrogen yield of 23.2 mmol H2/gbiomass was attained using the Ni10Mg5Ca5 catalyst at the gasification temperature of 600 oC. However, the maximum of tar conversion was observed around 78 wt.% at gasification temperature up to 800 oC.


Sign in / Sign up

Export Citation Format

Share Document