Are advantages from the partial replacement of corn with second-generation energy crops undermined by climate change? A case study for giant reed in northern Italy

2015 ◽  
Vol 80 ◽  
pp. 85-93 ◽  
Author(s):  
G. Cappelli ◽  
S.S. Yamaç ◽  
T. Stella ◽  
C. Francone ◽  
L. Paleari ◽  
...  
Author(s):  
Diego Pires Ferraz Trindade ◽  
Meelis Pärtel ◽  
Carlos Pérez Carmona ◽  
Tiina Randlane ◽  
Juri Nascimbene

AbstractMountains provide a timely opportunity to examine the potential effects of climate change on biodiversity. However, nature conservation in mountain areas have mostly focused on the observed part of biodiversity, not revealing the suitable but absent species—dark diversity. Dark diversity allows calculating the community completeness, indicating whether sites should be restored (low completeness) or conserved (high completeness). Functional traits can be added, showing what groups should be focused on. Here we assessed changes in taxonomic and functional observed and dark diversity of epiphytic lichens along elevational transects in Northern Italy spruce forests. Eight transects (900–1900 m) were selected, resulting in 48 plots and 240 trees, in which lichens were sampled using four quadrats per tree (10 × 50 cm). Dark diversity was estimated based on species co-occurrence (Beals index). We considered functional traits related to growth form, photobiont type and reproductive strategy. Linear and Dirichlet regressions were used to examine changes in taxonomic metrics and functional traits along gradient. Our results showed that all taxonomic metrics increased with elevation and functional traits of lichens differed between observed and dark diversity. At low elevations, due to low completeness and harsh conditions, both restoration and conservation activities are needed, focusing on crustose species. Towards high elevations, conservation is more important to prevent species pool losses, focusing on macrolichens, lichens with Trentepohlia and sexual reproduction. Finally, dark diversity and functional traits provide a novel tool to enhance nature conservation, indicating particular threatened groups, creating windows of opportunities to protect species from both local and regional extinctions.


2020 ◽  
Vol 291 ◽  
pp. 108081 ◽  
Author(s):  
Riccardo A. Ravasi ◽  
Livia Paleari ◽  
Fosco M. Vesely ◽  
Ermes Movedi ◽  
William Thoelke ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2679
Author(s):  
Francesca Berteni ◽  
Arianna Dada ◽  
Giovanna Grossi

The evaluation of sediment yield by water erosion taking into consideration the possible impact of climate change is the object of this work, concerning the use of the Modified Universal Soil Loss Equation (MUSLE) in an Italian case study. This empirical model was implemented in a Geographical Information System, taking into account Alpine hydrology and geomorphological and climate parameters, which are crucial in the analysis of the intensity and variability of sediment yield production processes. The case study is the Guerna Creek basin, a small-sized mountain watershed placed in Lombardy, in the South-Central Alps (Northern Italy). In recent decades it has been hit at the same time by floods and erosive phenomena, showing its hydraulic-hydrological weakness. Three future climate change scenarios from 2041 to 2060, around the middle of this century, were built according to CORDEX data referring to three different Representative Concentration Pathways (RCP 2.6, RCP 4.5, RCP 8.5). The findings showed that in the future climate, the sediment yield at the basin scale might change by 24–44% for a single heavy storm in the middle of the current century.


2020 ◽  
Author(s):  
Roberta Perico ◽  
Paolo Frattini ◽  
Marco Celesti ◽  
Roberto Colombo ◽  
Giovanni Battista Crosta

<p>The recognized evidence of global warming demands assessment of the present and future water cycle in Europe and worldwide. Recently, evidence of modified hydrological regime in the Alps under climate change has been documented. In particular, several studies (e.g. Bocchiola, 2014; Soncini et al. 2016) indicated an increase in hydrological flows in autumn and winter in response to snowfall trading with intense rainfall, shorter snow cover during winter, as well as decreased flows during dry spring and summer and large shrinking of glaciers at high altitude. However, according to the IPCC Fifth Assessment Report, it is still necessary to deepen our understanding of the impact of climate change and land use on groundwater recharge and levels in the alpine catchment areas (Cochand et al. 2019).</p><p>For this purpose, a water balance of the last three hydrogeological years (March 2017 - March 2020) was carried out on the Valtellina catchment (northern Italy, Central Italian Alps). This basin is a perfect case study for its wide unconfined aquifer in the floodplain, which makes it highly sensitive to this type of change. Moreover, the management of the water resource is of considerable importance, being crucial in a wide range of sectors (tourism, irrigation, domestic use, energy and industry).</p><p>Due to the extensive and diversified study area (26,000 km<sup>2</sup>) and the low ground data density (7 meteorological stations, 4 surface-water monitoring points, and 9 groundwater monitoring points), the water balance terms were estimated by exploiting and combining Earth Observation data products with ground data, also taking into account the geological and geomorphological characteristics of the basin. In particular, the evapotranspiration and the snow cover were provided, by MOD16A2 (MODIS/Terra Evapotranspiration 8-Day Level-4 Global 500m SIN Grid) and MOD10A2 (MODIS/Terra Snow Cover 8-Day L3 Global 500m SIN Grid, Version 6) satellite data, respectively.</p><p>As a result, the groundwater storage of a wet hydrogeological year compared with the groundwater storage of a dry hydrogeological year allowed analysing the sensitivity of groundwater resources to climate change.</p><p> </p><p>Bocchiola, D.: Long term (1921–2011) Hydrological regime of Alpine catchments in Northern Italy. Advances in Water Resources, 70, 51-64, 2014.</p><p>Cochand, M., Christe, P., Ornstein, P., & Hunkeler, D.: Groundwater storage in high alpine catchments and its contribution to streamflow. Water Resources Research, 55(4), 2613-2630, 2019.</p><p>Soncini, A., Bocchiola, D., Confortola, G., Minora, U., Vuillermoz, E., Salerno, F., Viviano, G., Shrestha, D., Senese, A., Smiraglia, C. and Diolaiuti, G.A.: Future hydrological regimes and glacier cover in the Everest region: The case study of the upper Dudh Koshi basin. Science of the Total Environment, 565, 1084-1101, 2016.</p>


Plants ◽  
2016 ◽  
Vol 5 (4) ◽  
pp. 42 ◽  
Author(s):  
Anna Mercuri ◽  
Paola Torri ◽  
Rita Fornaciari ◽  
Assunta Florenzano

2020 ◽  
Author(s):  
Mattia Galizzi ◽  
Renzo Rosso ◽  
Daniele Bocchiola

<p>Flood risk in Italy is a wide-spread and never-ending issue. Traditional flood defense focused on making the river system “resistant” to flood events, possibly by flood-control structures including floodwalls, levees, dams and channels. These actions reduce the frequency of inundations, but they do not affect flooding effects, and associated impacts once the flood plain is inundated. In facts, structural flood defenses are designed and operated to accommodate floods not exceeding a given magnitude, as fixed by the original design. Thus, these engineering works are highly inefficient to cope with capacity-exceeding floods, the magnitude of which was fixed many years ago using poor data sets, and it is expected to increase with climate changes.</p><p>FLORIMAP (Smart FLOod RIsk MAnagement Policies), a project funded by Fondazione CARIPLO aims to revalue extreme floods distribution in the different homogeneous areas of northern Italy using regional approaches based upon recent data form the last three decades.</p><p>FLORIMAP will first cover open issues associated with the quantification of flood hazard and inundation risk, then it will assess human exposure and vulnerability, and combine these issues with strategies of communication and risk management, because risk communication is an important activity that can influence the flood risk management. Communication is the bridge between the technical and professional community, decision makers, elected officials, funding sources, and the public at large. The literature on risk communication and perception has highlighted that the understanding of the psychological perception of environmental risk is a crucial factor in order to foster the community resilience and to promote adaptive attitudes and behaviors.</p><p>Here, we present a preliminary assessment of updated extreme values distribution for the case study of Northern Italy hydrologically homogeneous regions. The results will be then compared against those obtained with previous dataset dating until 1970, to study the evolution of flood hazard and inundation risk under recent climate change. We then provide application of flood hazard, and risk for a case study area, and demonstrate modified hazard under recent climate change.</p><p>We then discuss implications for risk communication in the target areas, and provide suggestions for prosecution of the FLORIMAP project. </p>


Sign in / Sign up

Export Citation Format

Share Document