Practical strategies to improve harvestable biomass energy yield in microalgal culture: A review

2021 ◽  
Vol 145 ◽  
pp. 105941
Author(s):  
Nima Hajinajaf ◽  
Abbas Mehrabadi ◽  
Omid Tavakoli
2019 ◽  
Vol 19 (4) ◽  
pp. 993
Author(s):  
Rahsya Nur Udzaifa Abdul Rahman ◽  
Mazni Ismail ◽  
Ruwaida Abdul Rasid ◽  
Noor Ida Amalina Ahamad Nordin

Food waste (FW) represents a major component of municipal solid waste (MSW) in Malaysia which causes negative impact due to poor waste management. One of a promising strategy to reduce the FW is to convert the FW to energy sources through thermal pre-treatment process which known as torrefaction. The aim of this study is to investigate the improvement of chemical properties and energy potential of the torrefied FW. The torrefaction of FW was conducted using tubular reactor to evaluate the influence of temperature (220 to 260°C) and residence time (15 to 60 min) on the quality of torrefied FW. The quality of torrefied FW were evaluated using ultimate analysis, proximate analysis, mass yield, energy yield and higher heating value (HHV). From ultimate analysis, the carbon, C was increased, however the hydrogen, H and oxygen, O decreased across the torrefaction temperature and residence time. This lead to the increasing of HHV with the increasing of temperature and time. The HHV of the dried FW was improved from 19.15 to 23.9 MJ/kg after being torrefied at 260°C for 60 min. The HHV indicated that FW has the potential to be utilized as an energy source.


2016 ◽  
Vol 15 ◽  
pp. 143-151 ◽  
Author(s):  
Abbas Mehrabadi ◽  
Mohammed M. Farid ◽  
Rupert Craggs

2017 ◽  
Vol 22 ◽  
pp. 93-103 ◽  
Author(s):  
Abbas Mehrabadi ◽  
Mohammed M. Farid ◽  
Rupert Craggs

2013 ◽  
Vol 47 (13) ◽  
pp. 4422-4432 ◽  
Author(s):  
J.B.K. Park ◽  
R.J. Craggs ◽  
A.N. Shilton

Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 551
Author(s):  
Adam Kleofas Berbeć ◽  
Mariusz Matyka

The present pilot study examined the potential of tobacco (Nicotiana tabacum L.) as an energy source. The fresh matter of whole tobacco plants, the yield of dry matter of stems and leaves, as well as the higher heating value and methane production potential from tobacco biomass were determined. The yield of tobacco leaves was on average 4.69 Mg ha−1 (dry matter) and 76.90 GJ ha−1 yr−1 (biomass energy yield). Tobacco stems yielded on average 8.55 Mg ha−1 and 150.69 GJ ha−1 yr−1, while yields of whole tobacco crops were (on average) 13.24 Mg ha−1 and 227.59 GJ ha−1 yr−1. Methane potential of tobacco plants was (on average) 248 Nm3 Mg−1 VS (volatile solids). The tobacco plants tested in the study could be used as energy crops as their dry matter and energy yields are similar to those of the most popular energy crops being currently used in biomass production in Poland and the European Union. Nevertheless, further studies to choose the Nicotiana species and varieties most suitable for energy production and to assess the cost-effectiveness of tobacco biomass production are needed.


2020 ◽  
Vol 80 (2) ◽  
pp. 133-146
Author(s):  
L Zhang ◽  
Z Zhang ◽  
J Cao ◽  
Y Luo ◽  
Z Li

Grain maize production exceeds the demand for grain maize in China. Methods for harvesting good-quality silage maize urgently need a theoretical basis and reference data in order to ensure its benefits to farmers. However, research on silage maize is limited, and very few studies have focused on its energetic value and quality. Here, we calibrated the CERES-Maize model for 24 cultivars with 93 field experiments and then performed a long-term (1980-2017) simulation to optimize genotype-environment-management (G-E-M) interactions in the 4 main agroecological zones across China. We found that CERES-Maize could reproduce the growth and development of maize well under various management and weather conditions with a phenology bias of <5 d and biomass relative root mean square error values of <5%. The simulated results showed that sowing long-growth-cycle cultivars approximately 10 d in advance could yield good-quality silage. The optimal sowing dates (from late May to July) and harvest dates (from early October to mid-November) gradually became later from north to south. A high-energy yield was expected when sowing at an early date and/or with late-maturing cultivars. We found that Northeast China and the North China Plain were potential silage maize growing areas, although these areas experienced a medium or even high frost risk. Southwestern maize experienced a low risk level, but the low soil fertility limited the attainable yield. The results of this paper provide information for designing an optimal G×E×M strategy to ensure silage maize production in the Chinese Maize Belt.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
Lauren K. D’Souza ◽  
William L. Ascher ◽  
Tanja Srebotnjak

Native American reservations are among the most economically disadvantaged regions in the United States; lacking access to economic and educational opportunities that are exacerbated by “energy insecurity” due to insufficient connectivity to the electric grid and power outages. Local renewable energy sources such as wind, solar, and biomass offer energy alternatives but their implementation encounters barriers such as lack of financing, infrastructure, and expertise, as well as divergent attitudes among tribal leaders. Biomass, in particular, could be a source of stable base-load power that is abundant and scalable in many rural communities. This case study examines the feasibility of a biomass energy plant on the Cocopah reservation in southwestern Arizona. It considers feedstock availability, cost and energy content, technology options, nameplate capacity, discount and interest rates, construction, operation and maintenance (O&M) costs, and alternative investment options. This study finds that at current electricity prices and based on typical costs for fuel, O&M over 30 years, none of the tested scenarios is presently cost-effective on a net present value (NPV) basis when compared with an alternative investment yielding annual returns of 3% or higher. The technology most likely to be economically viable and suitable for remote, rural contexts—a combustion stoker—resulted in a levelized costs of energy (LCOE) ranging from US$0.056 to 0.147/kWh. The most favorable scenario is a combustion stoker with an estimated NPV of US$4,791,243. The NPV of the corresponding alternative investment is US$7,123,380. However, if the tribes were able to secure a zero-interest loan to finance the plant’s installation cost, the project would be on par with the alternative investment. Even if this were the case, the scenario still relies on some of the most optimistic assumptions for the biomass-to-power plant and excludes abatement costs for air emissions. The study thus concludes that at present small-scale, biomass-to-energy projects require a mix of favorable market and local conditions as well as appropriate policy support to make biomass energy projects a cost-competitive source of stable, alternative energy for remote rural tribal communities that can provide greater tribal sovereignty and economic opportunities.


Author(s):  
Alisson H. Marinho ◽  
Eduardo V. Mendes ◽  
Rubens A. Vilela ◽  
Victor J. Bastos-Silva ◽  
Gustavo G. Araujo ◽  
...  

2009 ◽  
Author(s):  
Roger C. Conner ◽  
Tim O. Adams ◽  
Tony G. Johnson

2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


Sign in / Sign up

Export Citation Format

Share Document