Reverse genetics studies of attenuation of the ca A/AA/6/60 influenza virus: the role of the matrix gene

2004 ◽  
Vol 58 (9) ◽  
pp. 509-515 ◽  
Author(s):  
T.M. Sweet ◽  
H.F. Maassab ◽  
M.L. Herlocher
2019 ◽  
Vol 7 (9) ◽  
pp. 334 ◽  
Author(s):  
Christine L. Densmore ◽  
Deborah D. Iwanowicz ◽  
Shawn M. McLaughlin ◽  
Christopher A. Ottinger ◽  
Jason E. Spires ◽  
...  

We evaluated the prevalence of influenza A virus (IAV) in different species of bivalves inhabiting natural water bodies in waterfowl habitat along the Delmarva Peninsula and Chesapeake Bay in eastern Maryland. Bivalve tissue from clam and mussel specimens (Macoma balthica, Macoma phenax, Mulinia sp., Rangia cuneata, Mya arenaria, Guekensia demissa, and an undetermined mussel species) from five collection sites was analyzed for the presence of type A influenza virus by qPCR targeting the matrix gene. Of the 300 tissue samples analyzed, 13 samples (4.3%) tested positive for presence of influenza virus A matrix gene. To our knowledge, this is the first report of detection of IAV in the tissue of any bivalve mollusk from a natural water body.


mSystems ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Simon B. Otto ◽  
Marivic Martin ◽  
Daniel Schäfer ◽  
Raimo Hartmann ◽  
Knut Drescher ◽  
...  

ABSTRACT The self-produced biofilm provides beneficial protection for the enclosed cells, but the costly production of matrix components makes producer cells susceptible to cheating by nonproducing individuals. Despite detrimental effects of nonproducers, biofilms can be heterogeneous, with isogenic nonproducers being a natural consequence of phenotypic differentiation processes. For instance, in Bacillus subtilis biofilm cells differ in production of the two major matrix components, the amyloid fiber protein TasA and exopolysaccharides (EPS), demonstrating different expression levels of corresponding matrix genes. This raises questions regarding matrix gene expression dynamics during biofilm development and the impact of phenotypic nonproducers on biofilm robustness. Here, we show that biofilms are structurally heterogeneous and can be separated into strongly and weakly associated clusters. We reveal that spatiotemporal changes in structural heterogeneity correlate with matrix gene expression, with TasA playing a key role in biofilm integrity and timing of development. We show that the matrix remains partially privatized by the producer subpopulation, where cells tightly stick together even when exposed to shear stress. Our results support previous findings on the existence of “weak points” in seemingly robust biofilms as well as on the key role of linkage proteins in biofilm formation. Furthermore, we provide a starting point for investigating the privatization of common goods within isogenic populations. IMPORTANCE Biofilms are communities of bacteria protected by a self-produced extracellular matrix. The detrimental effects of nonproducing individuals on biofilm development raise questions about the dynamics between community members, especially when isogenic nonproducers exist within wild-type populations. We asked ourselves whether phenotypic nonproducers impact biofilm robustness, and where and when this heterogeneity of matrix gene expression occurs. Based on our results, we propose that the matrix remains partly privatized by the producing subpopulation, since producing cells stick together when exposed to shear stress. The important role of linkage proteins in robustness and development of the structurally heterogeneous biofilm provides an entry into studying the privatization of common goods within isogenic populations.


2019 ◽  
Author(s):  
Simon B. Otto ◽  
Marivic Martin ◽  
Daniel Schäfer ◽  
Raimo Hartmann ◽  
Knut Drescher ◽  
...  

ABSTRACTThe self-produced biofilm provides beneficial protection for the enclosed cells, but the costly production of matrix components makes producer cells susceptible to cheating by non-producing individuals. Despite detrimental effects of non-producers, biofilms can be heterogeneous, with isogenic non-producers being a natural consequence of phenotypic differentiation processes. For instance, in Bacillus subtilis biofilm cells differ in the two major matrix components production, the amyloid fiber protein TasA and exopolysaccharides (EPS), demonstrating different expression levels of corresponding matrix genes. This raises questions regarding matrix gene expression dynamics during biofilm development and the impact of phenotypic non-producers on biofilm robustness. Here, we show that biofilms are structurally heterogeneous and can be separated into strongly and weakly associated clusters. We reveal that spatiotemporal changes in structural heterogeneity correlate with matrix gene expression, with TasA playing a key role in biofilm integrity and timing of development. We show that the matrix remains partially privatized by the producer subpopulation, where cells tightly stick together even when exposed to shear stress. Our results support previous findings on the existence of ‘weak points’ in seemingly robust biofilms as well as on the key role of linkage proteins in biofilm formation. Furthermore, we provide a starting point for investigating the privatization of common goods within isogenic populations.IMPORTANCEBiofilms are communities of bacteria protected by a self-produced extracellular matrix. The detrimental effects of non-producing individuals on biofilm development raises questions about the dynamics between community members, especially when isogenic non-producers exist within wild-type populations. We asked ourselves whether phenotypic non-producers impact biofilm robustness, and where and when this heterogeneity of matrix gene expression occurs. Based on our results we propose that the matrix remains partly privatized by the producing subpopulation, since producing cells stick together when exposed to shear stress. The important role of linkage proteins in robustness and development of the structurally heterogeneous biofilm provides an entry into studying the privatization of common goods within isogenic populations.


2014 ◽  
Vol 143 (4) ◽  
pp. 772-780 ◽  
Author(s):  
H. MOON ◽  
M. HONG ◽  
J. K. KIM ◽  
B. SEON ◽  
W. NA ◽  
...  

SUMMARYAfter an outbreak of pandemic influenza A/H1N1 (pH1N1) virus, we had previously reported the emergence of a recombinant canine influenza virus (CIV) between the pH1N1 virus and the classic H3N2 CIV. Our ongoing routine surveillance isolated another reassortant H3N2 CIV carrying the matrix gene of the pH1N1 virus from 2012. The infection dynamics of this H3N2 CIV variant (CIV/H3N2mv) were investigated in dogs and ferrets via experimental infection and transmission. The CIV/H3N2mv-infected dogs and ferrets produced typical symptoms of respiratory disease, virus shedding, seroconversion, and direct-contact transmissions. Although indirect exposure was not presented for ferrets, CIV/H3N2mv presented higher viral replication in MDCK cells and more efficient transmission was observed in ferrets compared to classic CIV H3N2. This study demonstrates the effect of reassortment of the M gene of pH1N1 in CIV H3N2.


2000 ◽  
Vol 74 (4) ◽  
pp. 1781-1786 ◽  
Author(s):  
Matthew Bui ◽  
Elizabeth G. Wills ◽  
Ari Helenius ◽  
Gary R. Whittaker

ABSTRACT The protein kinase inhibitor H7 blocks influenza virus replication, inhibits production of the matrix protein (M1), and leads to a retention of the viral ribonucleoproteins (vRNPs) in the nucleus at late times of infection (K. Martin and A. Helenius, Cell 67:117–130, 1991). We show here that production of assembled vRNPs occurs normally in H7-treated cells, and we have used H7 as a biochemical tool to trap vRNPs in the nucleus. When H7 was removed from the cells, vRNP export was specifically induced in a CHO cell line stably expressing recombinant M1. Similarly, fusion of cells expressing recombinant M1 from a Semliki Forest virus vector allowed nuclear export of vRNPs. However, export was not rescued when H7 was present in the cells, implying an additional role for phosphorylation in this process. The viral NS2 protein was undetectable in these systems. We conclude that influenza virus M1 is required to induce vRNP nuclear export but that cellular phosphorylation is an additional factor.


2005 ◽  
Vol 79 (3) ◽  
pp. 1918-1923 ◽  
Author(s):  
Teresa Liu ◽  
Zhiping Ye

ABSTRACT The matrix protein (M1) of influenza virus plays an essential role in viral replication. Our previous studies have shown that basic amino acids 101RKLKR105 of M1 are involved in RNP binding and nuclear localization. For the present work, the functions of 101RKLKR105 were studied by introducing mutations into the M gene of influenza virus A/WSN/33 by reverse genetic methods. Individual substitution, R101S or R105S, had a minimal effect on viral replication. In contrast, the double mutation R101S-R105S was synergistic and resulted in temperature sensitivity reflected by reduced viral replication at a restrictive temperature. To investigate the in vivo effect on infection, BALB/c mice were infected with either A/WSN/33 wild-type (Wt) or mutant viruses and assessed for signs of illness, viral replication in the lungs, and survival rates. The results from mouse studies indicated that the R101S-R105S double mutant virus was strongly attenuated, while single mutant viruses R101S and R105S were minimally attenuated compared to A/WSN33 Wt under the same conditions. In challenge studies, mice immunized by infection with R101S-R105S were fully protected from lethal challenge with A/WSN/33. The replication and attenuating properties of R101S-R105S suggest its potential in development of live influenza virus vaccines.


2019 ◽  
Vol 47 (5) ◽  
pp. 1543-1555 ◽  
Author(s):  
Maurizio Mongiat ◽  
Simone Buraschi ◽  
Eva Andreuzzi ◽  
Thomas Neill ◽  
Renato V. Iozzo

Abstract The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.


Sign in / Sign up

Export Citation Format

Share Document