Pretreatment of Pam3CSK4 attenuates inflammatory responses caused by systemic infection of methicillin-resistant Staphylococcus aureus in mice

2017 ◽  
Vol 95 ◽  
pp. 1684-1692 ◽  
Author(s):  
Zhaoxia Huang ◽  
Xiayu Yi ◽  
Yiguo Chen ◽  
Xiaorui Hou ◽  
Xiangyu Wang ◽  
...  
Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1018
Author(s):  
Lu Yang ◽  
Gulimire Niyazi ◽  
Yu Qi ◽  
Zhiqian Yao ◽  
Lingling Huang ◽  
...  

Systemic infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are life-threatening due to their strong multidrug resistance, especially since the biofilms formed by MRSA are more difficult to inactivate by antibiotics, causing long term recurrence of infection. Plasma-activated saline (PAS), a derived form of cold atmospheric-pressure plasma, can effectively inactivate bacteria and cancer cells and has been applied to sterilization and cancer treatment. Previous studies have demonstrated that the pretreatment of MRSA with PAS could promote the action of antibiotics. Here, the PAS was used as an antibiotic adjuvant to promote the inactivation of MRSA biofilms by rifampicin and vancomycin, and the combined treatment reduced approximately 6.0-log10 MRSA cells in biofilms. The plasma-activated saline and rifampicin synergistically and effectively reduced the systemic infection in the murine model. The histochemical analysis and the blood hematological and biochemical test demonstrated that the combined treatment with plasma-activated saline and rifampicin improved the blood hematological and biochemical parameters of infected mice by reducing the infection. Therefore, PAS based on plasma technology represents a new strategy for the treatment of infectious disease caused by multidrug-resistant bacteria and alleviating antibiotic resistance.


2009 ◽  
Vol 18 (1) ◽  
pp. 86-88 ◽  
Author(s):  
Aaron S. Bruns ◽  
Namita Sood

A systemic infection due to community-acquired methicillin-resistant Staphylococcus aureus occurred in a hospital-naive 17-year-old girl with no history of soft-tissue infection. Although the initial signs and symptoms were indolent, systemic manifestations occurred, including extensive lung parenchymal damage and acute respiratory distress syndrome. The patient required long-term mechanical ventilation and was given linezolid for 8 weeks. Blood cultures eventually became negative for the staphylococci, and the patient was discharged to a rehabilitation facility. A probable source of the infection was the patient’s self-cutting and self-piercing.


2020 ◽  
Vol 8 (1) ◽  
pp. 99 ◽  
Author(s):  
Zhongwei Yuan ◽  
Yuyun Dai ◽  
Ping Ouyang ◽  
Tayyab Rehman ◽  
Sajjad Hussain ◽  
...  

Methicillin-resistant Staphylococcus aureus (MRSA) is a common human pathogen that causes several difficult-to-treat infections, including biofilm-associated infections. The biofilm-forming ability of S. aureus plays a pivotal role in its resistance to most currently available antibiotics, including vancomycin, which is the first-choice drug for treating MRSA infections. In this study, the ability of thymol (a monoterpenoid phenol isolated from plants) to inhibit biofilm formation and to eliminate mature biofilms, was assessed. We found that thymol could inhibit biofilm formation and remove mature biofilms by inhibiting the production of polysaccharide intracellular adhesin (PIA) and the release of extracellular DNA (eDNA). However, cotreatment with thymol and vancomycin was more effective at eliminating MRSA biofilms, in a mouse infection model, than monotherapy with vancomycin. Comparative histopathological analyses revealed that thymol reduced the pathological changes and inflammatory responses in the wounds. Assessments of white blood cell counts and serum TNF-α and IL-6 levels showed reduced inflammation and an increased immune response following treatment with thymol and vancomycin. These results indicate that combinatorial treatment with thymol and vancomycin has the potential to serve as a more effective therapy for MRSA biofilm-associated infections than vancomycin monotherapy.


2013 ◽  
Vol 109 (04) ◽  
pp. 684-695 ◽  
Author(s):  
Adriana Vieira de Abreu ◽  
Jeffrey T. Holloway ◽  
James E. Marvin ◽  
Bjoern F. Kraemer ◽  
Guy A. Zimmerman ◽  
...  

SummaryMethicillin-resistant Staphylococcus aureus (MRSA) induces a prothrombotic and pro-inflammatory milieu. Although timely antibiotic administration in MRSA sepsis may improve outcomes by arresting bacterial growth, the effects of antibiotics on mitigating injurious thrombo-inflammatory cellular responses remains unexplored. Using a newly developed human whole blood model and an in vivo mouse model of MRSA infection, we examined how antibiotics inhibit MRSA induced thrombo-inflammatory pathways. Human whole blood was inoculated with MRSA. Thrombin generation and inflammatory cytokine synthesis was measured in the presence or absence of linezolid and vancomycin. C57BL/6 mice were injected with MRSA and the effect of vancomycin administration was examined. MRSA accelerated thrombin generation in a time- and concentration-dependent manner and induced the release of cytokines, including interleukin (IL)-6, IL-8, and monocyte chemotactic protein (MCP)-1. The increase in thrombin generation and inflammatory responses was mediated through the synthesis of tissue factor and cytokines, respectively, and the release of microparticles. The early administration of antibiotics restored normal thrombin generation patterns and significantly reduced the synthesis of cytokines. In contrast, when antibiotic administration was delayed, thrombin generation and cytokine synthesis were not significantly reduced. In mice infected with MRSA, early antibiotic administration reduced thrombin anti-thrombin complexes and cytokine synthesis, whereas delayed antibiotic administration did not. These data provide novel mechanistic evidence of the importance of prompt antibiotic administration in infectious syndromes.


2021 ◽  
Vol 22 (20) ◽  
pp. 10950
Author(s):  
Seongwon Pak ◽  
Bikash Thapa ◽  
Keunwook Lee

The herbal plant Angelica gigas (A. gigas) has been used in traditional medicine in East Asian countries, and its chemical components are reported to have many pharmacological effects. In this study, we showed that a bioactive ingredient of A. gigas modulates the functional activity of macrophages and investigated its effect on inflammation using a sepsis model. Among 12 different compounds derived from A. gigas, decursinol angelate (DA) was identified as the most effective in suppressing the induction of TNF-α and IL-6 in murine macrophages. When mice were infected with a lethal dose of methicillin-resistant Staphylococcus aureus (MRSA), DA treatment improved the mortality and bacteremia, and attenuated the cytokine storm, which was associated with decreased CD38+ macrophage populations in the blood and liver. In vitro studies revealed that DA inhibited the functional activation of macrophages in the expression of pro-inflammatory mediators in response to microbial infection, while promoting the bacterial killing ability with an increased production of reactive oxygen species. Mechanistically, DA treatment attenuated the NF-κB and Akt signaling pathways. Intriguingly, ectopic expression of an active mutant of IKK2 released the inhibition of TNF-α production by the DA treatment, whereas the inhibition of Akt resulted in enhanced ROS production. Taken together, our experimental evidence demonstrated that DA modulates the functional activities of pro-inflammatory macrophages and that DA could be a potential therapeutic agent in the management of sepsis.


Sign in / Sign up

Export Citation Format

Share Document