scholarly journals Arabinoxylan rice bran (MGN-3/Biobran) alleviates radiation-induced intestinal barrier dysfunction of mice in a mitochondrion-dependent manner

2020 ◽  
Vol 124 ◽  
pp. 109855 ◽  
Author(s):  
Zhenguo Zhao ◽  
Wei Cheng ◽  
Wei Qu ◽  
Kai Wang
2021 ◽  
Vol 12 ◽  
Author(s):  
Zhifeng Jiang ◽  
Feiyu Yang ◽  
Jingbo Qie ◽  
Chaoyuan Jin ◽  
Feng Zhang ◽  
...  

Intestinal barrier dysfunction is characterized by increased intestinal permeability to lumen endotoxin, showing remarkable predisposition to immune enteropathy, and colorectal cancer tumor necrosis factor (TNF)-α is associated with this pathological process, while the mechanism remains unknown. In this study, different doses of TNF-α were used for Caco-2 cell treatment. We discovered that miR-21-3p expression was obviously increased by TNF-α in a dose-dependent manner. Further study demonstrated that TNF-α could upregulate miR-21-3p expression through the NF-κB signaling pathway. Then, TargetScan and miRWalk miRNA–mRNA interaction prediction online tools were introduced, and metadherin (MTDH) was screened out as a potential target of miR-21-3p. We subsequently found that miR-21-3p could directly target the 3′-untranslated region (UTR) of MTDH mRNA and inhibit its expression. Furthermore, it was demonstrated that miR-21-3p could regulate the Wnt signaling pathway by targeting MTDH mRNA, suggesting the effect of miR-21-3p/MTDH/Wnt axis on intestinal barrier dysfunction. Our findings provide a novel potential biomarker and therapeutic target for intestinal barrier dysfunction and related diseases.


2006 ◽  
Vol 51 (9) ◽  
pp. 1549-1556 ◽  
Author(s):  
Desheng Song ◽  
Bin Shi ◽  
Hua Xue ◽  
Yousheng Li ◽  
Xiaodong Yang ◽  
...  

2006 ◽  
Vol 41 (8) ◽  
pp. 1386-1391 ◽  
Author(s):  
Ali Nayci ◽  
Sibel Atis ◽  
Gulden Ersoz ◽  
Ayse Polat ◽  
Derya Talas

Amino Acids ◽  
2021 ◽  
Author(s):  
Tatsuya Hasegawa ◽  
Ami Mizugaki ◽  
Yoshiko Inoue ◽  
Hiroyuki Kato ◽  
Hitoshi Murakami

AbstractIntestinal oxidative stress produces pro-inflammatory cytokines, which increase tight junction (TJ) permeability, leading to intestinal and systemic inflammation. Cystine (Cys2) is a substrate of glutathione (GSH) and inhibits inflammation, however, it is unclear whether Cys2 locally improves intestinal barrier dysfunction. Thus, we investigated the local effects of Cys2 on oxidative stress-induced TJ permeability and intestinal inflammatory responses. Caco-2 cells were cultured in a Cys2-supplemented medium for 24 h and then treated with H2O2 for 2 h. We assessed TJ permeability by measuring transepithelial electrical resistance and the paracellular flux of fluorescein isothiocyanate–dextran 4 kDa. We measured the concentration of Cys2 and GSH after Cys2 pretreatment. The mRNA expression of pro-inflammatory cytokines was assessed. In addition, the levels of TJ proteins were assessed by measuring the expression of TJ proteins in the whole cells and the ratio of TJ proteins in the detergent-insoluble fractions to soluble fractions (IS/S ratio). Cys2 treatment reduced H2O2-induced TJ permeability. Cys2 did not change the expression of TJ proteins in the whole cells, however, suppressed the IS/S ratio of claudin-4. Intercellular levels of Cys2 and GSH significantly increased in cells treated with Cys2. Cys2 treatment suppressed the mRNA expression of pro-inflammatory cytokines, and the mRNA levels were significantly correlated with TJ permeability. In conclusion, Cys2 treatment locally reduced oxidative stress-induced intestinal barrier dysfunction possively due to the mitigation of claudin-4 dislocalization. Furthermore, the effect of Cys2 on the improvement of intestinal barrier function is related to the local suppression of oxidative stress-induced pro-inflammatory responses.


2021 ◽  
Author(s):  
Fangfang Yan ◽  
Wanbing Chen ◽  
Li Zhao ◽  
Qun Lu ◽  
Chengming Wang ◽  
...  

Procyanidins can alleviate small intestine damage induced by acrylamide (ACR). However, little is known about whether procyanidins after gastrointestinal digestion can prevent ACR-induced intestinal barrier damage and the possible mechanism....


2018 ◽  
Vol 120 (3) ◽  
pp. 4545-4554 ◽  
Author(s):  
Zhihua Liu ◽  
Chao Li ◽  
Shihua Chen ◽  
Hongcheng Lin ◽  
Huan Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document