scholarly journals Multifunctional compounds in the extract from mature seeds of Vicia faba var. minor: Phytochemical profiling, antioxidant activity and cellular safety in human selected blood cells in in vitro trials

2021 ◽  
Vol 139 ◽  
pp. 111718
Author(s):  
Mariusz Kowalczyk ◽  
Agata Rolnik ◽  
Weronika Adach ◽  
Magdalena Kluska ◽  
Michał Juszczak ◽  
...  
Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
N Niciforovic ◽  
S Solujic ◽  
V Mihailovic ◽  
D Pavlovic-Muratspahic

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
E Eroğlu Özkan ◽  
N Özsoy ◽  
G Özhan ◽  
A Mat

1986 ◽  
Vol 55 (01) ◽  
pp. 012-018 ◽  
Author(s):  
Paolo Gresele ◽  
Jef Arnout ◽  
Hans Deckmyn ◽  
Jos Vermylen

SummaryDipyridamole inhibits platelet aggregation in whole blood at lower concentrations than in plasma. The blood cells responsible for increased effectiveness in blood are the erythrocytes. Using the impedance aggregometer we have carried out a series of pharmacological studies in vitro to elucidate the mechanism of action of dipyridamole in whole blood. Adenosine deaminase, an enzyme breaking down adenosine, reverses the inhibitory action of dipyridamole. Two different adenosine receptor antagonists, 5’-deoxy-5’-methylthioadenosine and theophylline, also partially neutralize the activity of dipyridamole in blood. Enprofylline, a phosphodiesterase inhibitor with almost no adenosine receptor antagonistic properties, potentiates the inhibition of platelet aggregation by dipyridamole. An inhibitory effect similar to that of dipyridamole can be obtained combining a pure adenosine uptake inhibitor (RE 102 BS) with a pure phosphodiesterase inhibitor (MX-MB 82 or enprofylline). Mixing the blood during preincubation with dipyridamole increases the degree of inhibition. Lowering the haematocrit slightly reduces the effectiveness.Although we did not carry out direct measurements of adenosine levels, the results of our pharmacological studies clearly show that dipyridamole inhibits platelet aggregation in whole blood by blocking the reuptake of adenosine formed from precursors released by red blood cells following microtrauma. Its slight phosphodiesterase inhibitory action potentiates the effects of adenosine on platelets.


2012 ◽  
Vol 2 (12) ◽  
pp. 58-59
Author(s):  
suvarna M N Vinay ◽  
◽  
Ramesh B S Ramesh B S ◽  
Venkatachalapathy R Venkatachalapathy R ◽  
Makari Hanumantappa K ◽  
...  

Author(s):  
Waras Nurcholis ◽  
Edy Djauhari Purwakusumah ◽  
Mono Rahardjo ◽  
Latifah K. Darusman

Temulawak (Curcuma  xanthorrhizaRoxb.) belongs to the family Zingiberaceae, has been empirically used as herbal medicines. The research was aimed to evaluate three promising lines of Temulawak based on their high bioactive contents (xanthorrhizol and curcuminoid) and its in vitro bioactivity (antioxidant and toxicity), and to obtain information on agrobiophysic environmental condition which produced high bioactive compounds. The xanthorrhizol and curcuminoid contents were measured by HPLC. In vitro antioxidant and toxicity were determined by DPPH (1,1-diphenyl-2-picryl-hydrazyl) method and BSLT (Brine Shrimp Lethality Test). The result showed that promising line A produced the highest yield of bioactive and bioactivity, i.e. 0.157 and 0.056 g plant-1of xanthorrizol and curcuminoid respectively. The IC50 of antioxidant activity was 65.09 mg L-1and LC50of toxicity was 69.05 mg L-1. In this study, Cipenjo had the best temulawak performance than two other locations. According to the agrobiophysic parameters, Cipenjo environmental condition was suitable for temulawak cultivation with temperature 28-34 ºC, rainfall ± 223.97 mm year-1 and sandy clay soil. Keywords: antioxidant, curcuminoid, promising lines, temulawak, xanthorrhizol


Sign in / Sign up

Export Citation Format

Share Document