scholarly journals Longitudinal stability of molecular alterations and drug response profiles in tumor spheroid cell lines enables reproducible analyses

2021 ◽  
Vol 144 ◽  
pp. 112278
Author(s):  
A.C. Nickel ◽  
D. Picard ◽  
N. Qin ◽  
M. Wolter ◽  
K. Kaulich ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tea Pemovska ◽  
Johannes W. Bigenzahn ◽  
Ismet Srndic ◽  
Alexander Lercher ◽  
Andreas Bergthaler ◽  
...  

AbstractInterrogation of cellular metabolism with high-throughput screening approaches can unravel contextual biology and identify cancer-specific metabolic vulnerabilities. To systematically study the consequences of distinct metabolic perturbations, we assemble a comprehensive metabolic drug library (CeMM Library of Metabolic Drugs; CLIMET) covering 243 compounds. We, next, characterize it phenotypically in a diverse panel of myeloid leukemia cell lines and primary patient cells. Analysis of the drug response profiles reveals that 77 drugs affect cell viability, with the top effective compounds targeting nucleic acid synthesis, oxidative stress, and the PI3K/mTOR pathway. Clustering of individual drug response profiles stratifies the cell lines into five functional groups, which link to specific molecular and metabolic features. Mechanistic characterization of selective responses to the PI3K inhibitor pictilisib, the fatty acid synthase inhibitor GSK2194069, and the SLC16A1 inhibitor AZD3965, bring forth biomarkers of drug response. Phenotypic screening using CLIMET represents a valuable tool to probe cellular metabolism and identify metabolic dependencies at large.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2219-2219
Author(s):  
Guillaume Labilloy ◽  
Eric O'Brien ◽  
Brett VanCauwenbergh ◽  
Luke Byerly ◽  
Mitali Basu ◽  
...  

Abstract Background: Hematologic malignancies present a varied genetic landscape that plays an important role in prognosis and therapeutic outcome of patients. However, our understanding of the impact of a patient's molecular alterations on therapy is limited. Cell Line-Based High Throughput Screening (CBHTS) can allow novel drug discovery and systematic evaluation of drug response in cell lines or patient samples to large panels of drugs. Here, we present a comprehensive profiling of molecular alterations in hematologic malignancies and their impact on drug response, which we believe provides novel insight into drug sensitivity and resistance correlated with unique molecular alteration signatures as well as clinical trial development. Methods: Cell lines were acquired from ATCC, suspended in growth media, plated in 384 well plates, and allowed to proliferate for 24 hours before addition of drugs. Compounds were obtained from Selleck Chemicals and were added to cells at concentrations of 100nM and 1nM in quadruplicate, with a 0.1% concentration of DMSO. Cell viability was measured after 72 hours with drugs. DMSO was used as the vehicle control, and all drug effects are normalized to the DMSO control and reported as percent viable. Drug activity was studied across a panel of 1,828 drugs and 30 cell-lines. Drug activity clusters were defined using unsupervised learning (Distance metric: Euclidean and Ward linkage; tree height: 1.2). Cell lines were annotated using Broad CCLE and Gnomad database, and mutations were ranked into four groups based on predicted variant effect - high, medium, low, and modifier. Drugs were annotated using Anatomical Therapeutic Classification (ATC), while pathways and targets were annotated using ToppGene Suite. T-statistic was used to estimate significance of differential drug activity between sensitive (cell-lines with viability <20% considered highly sensitive) versus resistant cell-line groups (cell-lines with viability >85% considered highly resistant). Results: We identified 25 clusters with significant differential drug activity across the 30 cell lines. Corticosteroids (n=19), for example, clustered together by activity profile, and showed most differential response across five cell lines: NB4 (Acute Myeloid Leukemia, AML), Kasumi-1 (AML), HL-60 (Acute Lymphoblastic Leukemia, ALL), RS4-11 (ALL) and MV4-11 (Biphenotypic Acute Leukemia, BAL), p = 6.10-27. Steroid activity was minimal in NB4, MV4-11 and HL-60; however, highest in RS4-11 (<11% cell viability) and Kasumi-1. Interestingly, loxapine, an antipsychotic, which acts as a dopamine and serotonin 5-HT2 antagonist, clustered with the main corticosteroid group, and shared similar activity profile (p = 5.5 10-3). A unique gene signature common to RS4-11 and Kasumi-1 included mutations in LOXHD1, FBN3, TRIB3, TDRD6, ALX4, ALDH3B2, NT5DC3, TTC3, ZFAT and GLI2 with moderate variant effects impacting key hematologic processes. Conclusions: This high-dimensional screening against a backdrop of molecular alterations highlighted a potential for correlating differential drug activity with a patient's genetic landscape, with potential for experimental validation and clinical trial development. This pilot study further demonstrates that drug response in hematologic malignancy cell lines may be uniquely driven by a signature of molecular alterations sensitive to single or multiple therapeutic classes and provides rationale for novel drug discovery and drug repositioning in precision medicine. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Vol 11 (2) ◽  
pp. 203-210 ◽  
Author(s):  
Jiguang Wang ◽  
Judith Kribelbauer ◽  
Raul Rabadan

2022 ◽  
Vol 23 (2) ◽  
pp. 587
Author(s):  
Dong Woo Lee ◽  
Jung Eun Kim ◽  
Ga-Haeng Lee ◽  
Arang Son ◽  
Hee Chul Park ◽  
...  

Proton beam therapy (PBT) is a critical treatment modality for head and neck squamous cell carcinoma (HNSCC). However, not much is known about drug combinations that may improve the efficacy of PBT. This study aimed to test the feasibility of a three-dimensional (3D) tumor-spheroid-based high-throughput screening platform that could assess cellular sensitivity against PBT. Spheroids of two HNSCC cell lines—Fadu and Cal27—cultured with a mixture of Matrigel were arrayed on a 384-pillar/well plate, followed by exposure to graded doses of protons or targeted drugs including olaparib at various concentrations. Calcein staining of HNSCC spheroids revealed a dose-dependent decrease in cell viability for proton irradiation or multiple targeted drugs, and provided quantitative data that discriminated the sensitivity between the two HNSCC cell lines. The combined effect of protons and olaparib was assessed by calculating the combination index from the survival rates of 4 × 4 matrices, showing that Cal27 spheroids had greater synergy with olaparib than Fadu spheroids. In contrast, adavosertib did not synergize with protons in both spheroids. Taken together, we demonstrated that the 3D pillar/well array platform was a useful tool that provided rapid, quantitative data for evaluating sensitivity to PBT and drug combinations. Our results further supported that administration of the combination of PBT and olaparib may be an effective treatment strategy for HNSCC patients.


2003 ◽  
Vol 17 (15) ◽  
pp. 2263-2265 ◽  
Author(s):  
Sabina Kupershmidt ◽  
Iris C.-H. Yang ◽  
Kenshi Hayashi ◽  
Jian Wei ◽  
Siprachanh Chanthaphaychith ◽  
...  
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Farnoosh Abbas-Aghababazadeh ◽  
Pengcheng Lu ◽  
Brooke L. Fridley

Abstract Cancer cell lines (CCLs) have been widely used to study of cancer. Recent studies have called into question the reliability of data collected on CCLs. Hence, we set out to determine CCLs that tend to be overly sensitive or resistant to a majority of drugs utilizing a nonlinear mixed-effects (NLME) modeling framework. Using drug response data collected in the Cancer Cell Line Encyclopedia (CCLE) and the Genomics of Drug Sensitivity in Cancer (GDSC), we determined the optimal functional form for each drug. Then, a NLME model was fit to the drug response data, with the estimated random effects used to determine sensitive or resistant CCLs. Out of the roughly 500 CCLs studies from the CCLE, we found 17 cell lines to be overly sensitive or resistant to the studied drugs. In the GDSC, we found 15 out of the 990 CCLs to be excessively sensitive or resistant. These results can inform researchers in the selection of CCLs to include in drug studies. Additionally, this study illustrates the need for assessing the dose-response functional form and the use of NLME models to achieve more stable estimates of drug response parameters.


2019 ◽  
Vol 35 (14) ◽  
pp. i510-i519 ◽  
Author(s):  
Soufiane Mourragui ◽  
Marco Loog ◽  
Mark A van de Wiel ◽  
Marcel J T Reinders ◽  
Lodewyk F A Wessels

Abstract Motivation Cell lines and patient-derived xenografts (PDXs) have been used extensively to understand the molecular underpinnings of cancer. While core biological processes are typically conserved, these models also show important differences compared to human tumors, hampering the translation of findings from pre-clinical models to the human setting. In particular, employing drug response predictors generated on data derived from pre-clinical models to predict patient response remains a challenging task. As very large drug response datasets have been collected for pre-clinical models, and patient drug response data are often lacking, there is an urgent need for methods that efficiently transfer drug response predictors from pre-clinical models to the human setting. Results We show that cell lines and PDXs share common characteristics and processes with human tumors. We quantify this similarity and show that a regression model cannot simply be trained on cell lines or PDXs and then applied on tumors. We developed PRECISE, a novel methodology based on domain adaptation that captures the common information shared amongst pre-clinical models and human tumors in a consensus representation. Employing this representation, we train predictors of drug response on pre-clinical data and apply these predictors to stratify human tumors. We show that the resulting domain-invariant predictors show a small reduction in predictive performance in the pre-clinical domain but, importantly, reliably recover known associations between independent biomarkers and their companion drugs on human tumors. Availability and implementation PRECISE and the scripts for running our experiments are available on our GitHub page (https://github.com/NKI-CCB/PRECISE). Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document