scholarly journals Predicting Drug Response and Novel Therapeutic Candidates Using Signatures of Molecular Alterations in Hematologic Malignancies

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2219-2219
Author(s):  
Guillaume Labilloy ◽  
Eric O'Brien ◽  
Brett VanCauwenbergh ◽  
Luke Byerly ◽  
Mitali Basu ◽  
...  

Abstract Background: Hematologic malignancies present a varied genetic landscape that plays an important role in prognosis and therapeutic outcome of patients. However, our understanding of the impact of a patient's molecular alterations on therapy is limited. Cell Line-Based High Throughput Screening (CBHTS) can allow novel drug discovery and systematic evaluation of drug response in cell lines or patient samples to large panels of drugs. Here, we present a comprehensive profiling of molecular alterations in hematologic malignancies and their impact on drug response, which we believe provides novel insight into drug sensitivity and resistance correlated with unique molecular alteration signatures as well as clinical trial development. Methods: Cell lines were acquired from ATCC, suspended in growth media, plated in 384 well plates, and allowed to proliferate for 24 hours before addition of drugs. Compounds were obtained from Selleck Chemicals and were added to cells at concentrations of 100nM and 1nM in quadruplicate, with a 0.1% concentration of DMSO. Cell viability was measured after 72 hours with drugs. DMSO was used as the vehicle control, and all drug effects are normalized to the DMSO control and reported as percent viable. Drug activity was studied across a panel of 1,828 drugs and 30 cell-lines. Drug activity clusters were defined using unsupervised learning (Distance metric: Euclidean and Ward linkage; tree height: 1.2). Cell lines were annotated using Broad CCLE and Gnomad database, and mutations were ranked into four groups based on predicted variant effect - high, medium, low, and modifier. Drugs were annotated using Anatomical Therapeutic Classification (ATC), while pathways and targets were annotated using ToppGene Suite. T-statistic was used to estimate significance of differential drug activity between sensitive (cell-lines with viability <20% considered highly sensitive) versus resistant cell-line groups (cell-lines with viability >85% considered highly resistant). Results: We identified 25 clusters with significant differential drug activity across the 30 cell lines. Corticosteroids (n=19), for example, clustered together by activity profile, and showed most differential response across five cell lines: NB4 (Acute Myeloid Leukemia, AML), Kasumi-1 (AML), HL-60 (Acute Lymphoblastic Leukemia, ALL), RS4-11 (ALL) and MV4-11 (Biphenotypic Acute Leukemia, BAL), p = 6.10-27. Steroid activity was minimal in NB4, MV4-11 and HL-60; however, highest in RS4-11 (<11% cell viability) and Kasumi-1. Interestingly, loxapine, an antipsychotic, which acts as a dopamine and serotonin 5-HT2 antagonist, clustered with the main corticosteroid group, and shared similar activity profile (p = 5.5 10-3). A unique gene signature common to RS4-11 and Kasumi-1 included mutations in LOXHD1, FBN3, TRIB3, TDRD6, ALX4, ALDH3B2, NT5DC3, TTC3, ZFAT and GLI2 with moderate variant effects impacting key hematologic processes. Conclusions: This high-dimensional screening against a backdrop of molecular alterations highlighted a potential for correlating differential drug activity with a patient's genetic landscape, with potential for experimental validation and clinical trial development. This pilot study further demonstrates that drug response in hematologic malignancy cell lines may be uniquely driven by a signature of molecular alterations sensitive to single or multiple therapeutic classes and provides rationale for novel drug discovery and drug repositioning in precision medicine. Disclosures No relevant conflicts of interest to declare.

2010 ◽  
Vol 9 (11) ◽  
pp. 2914-2923 ◽  
Author(s):  
Anutosh Ganguly ◽  
Hailing Yang ◽  
Fernando Cabral

2018 ◽  
Author(s):  
Jonathan Ronen ◽  
Sikander Hayat ◽  
Altuna Akalin

ABSTRACTColorectal cancer (CRC) is a common cancer with a high mortality rate and a rising incidence rate in the developed world. The disease shows variable drug response and outcome. Molecular profiling techniques have been used to better understand the variability between tumours as well as cancer models such as cell lines. Drug discovery programs use cell lines as a proxy for human cancers to characterize their molecular makeup and drug response, identify relevant indications and discover biomarkers. In order to maximize the translatability and the clinical relevance of in vitro studies, selection of optimal cancer models is imperative. We have developed a deep learning based method to measure the similarity between CRC tumors and other tumors or disease models such as cancer cell lines. Our method efficiently leverages multi-omics data sets containing copy number alterations, gene expression and point mutations, and learns latent factors that describe the data in lower dimension. These latent factors represent the patterns across gene expression, copy number, and mutational profiles which are clinically relevant and explain the variability of molecular profiles across tumours and cell lines. Using these, we propose a refined colorectal cancer sample classification and provide best-matching cell lines in terms of multi-omics for the different subtypes. These findings are relevant for patient stratification and selection of cell lines for early stage drug discovery pipelines, biomarker discovery, and target identification.


2014 ◽  
Vol 20 (16) ◽  
pp. 2755-2759 ◽  
Author(s):  
Satoru Ebihara ◽  
Takae Ebihara ◽  
Peijun Gui ◽  
Ken Osaka ◽  
Yasunori Sumi ◽  
...  

2019 ◽  
Vol 16 (4) ◽  
pp. 386-391 ◽  
Author(s):  
Kenneth Lundstrom

Epigenetic mechanisms comprising of DNA methylation, histone modifications and gene silencing by RNA interference have been strongly linked to the development and progression of various diseases. These findings have triggered research on epigenetic functions and signal pathways as targets for novel drug discovery. Dietary intake has also presented significant influence on human health and disease development and nutritional modifications have proven important in prevention, but also the treatment of disease. Moreover, a strong link between nutrition and epigenetic changes has been established. Therefore, in attempts to develop novel safer and more efficacious drugs, both nutritional requirements and epigenetic mechanisms need to be addressed.


2020 ◽  
Vol 16 ◽  
Author(s):  
Tran Khac Vu ◽  
Nguyen Thi Thanh ◽  
Nguyen Van Minh ◽  
Nguyen Huong Linh ◽  
Nguyen Thi Phương Thao ◽  
...  

Background: Target-based approach to drug discovery currently attracts a great deal of interest from medicinal chemists in anticancer drug discovery and development. Histone deacetylase (HDAC) inhibitors represent an extensive class of targeted anti-cancer agents. Among the most explored structure moieties, hydroxybenzamides and hydroxypropenamides have been demonstrated to have potential HDAC inhibitory effects. Several compounds of these structural classes have been approved for clinical uses to treat different types of cancer, such as vorinostat and belinostat. Aims: This study aims at developing novel HDAC inhibitors bearing conjugated quinazolinone scaffolds with potential cytotoxicity against different cancer cell lines. Method: A series of novel N-hydroxyheptanamides incorporating conjugated 6-hydroxy-2 methylquinazolin-4(3H)- ones (15a-l) was designed, synthesized and evaluated for HDAC inhibitory potency as well as cytotoxicity against three human cancer cell lines, including HepG-2, MCF-7 and SKLu-1. Molecular simulations were finally performed to gain more insight into the structure-activity. relationships. Results: It was found that among novel conjugated quinazolinone-based hydroxamic acids synthesized, compounds 15a, 15c and 15f were the most potent, both in terms of HDAC inhibition and cytotoxicity. Especially, compound 15f displayed up to nearly 4-fold more potent than SAHA (vorinostat) in terms of cytotoxicity against MCF-7 cell line with IC50 value of 1.86 µM, and HDAC inhibition with IC50 value of 6.36 µM. Docking experiments on HDAC2 isozyme showed that these compounds bound to HDAC2 with binding affinities ranging from -10.08 to -14.93 kcal/mol compared to SAHA (-15.84 kcal/mol). It was also found in this research that most of the target compounds seemed to be more cytotoxic toward SKLu-1than MCF-7 and HepG-2. Conclusion: The resesrch results suggest that some hydroxamic acids could emerge for further evaluation and the results are well served as basics for further design of more potent HDAC inhibitors and antitumor agents.


2016 ◽  
Vol 11 (2) ◽  
pp. 203-210 ◽  
Author(s):  
Jiguang Wang ◽  
Judith Kribelbauer ◽  
Raul Rabadan

Sign in / Sign up

Export Citation Format

Share Document