T197. Reduced Striatal Dopamine Synthesis Capacity Mediates Altered Within-Basal Ganglia Intrinsic Functional Connectivity in Patients With Schizophrenia During Symptomatic Remission of Positive Symptoms

2019 ◽  
Vol 85 (10) ◽  
pp. S206
Author(s):  
Mihai Avram ◽  
Felix Brandl ◽  
Christian Sorg
2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S11-S11
Author(s):  
Teresa Katthagen ◽  
Jakob Kaminski ◽  
Andreas Heinz ◽  
Ralph Buchert ◽  
Florian Schlagenhauf

Abstract Background Increased striatal dopamine synthesis capacity (DSC) has consistently been reported in patients with schizophrenia (Sz). However, the functional mechanism translating this into behavior and symptoms remains unclear. It has been proposed that heightened striatal dopamine may blunt dopaminergic reward prediction error (RPE) signaling during reinforcement learning. Methods In this study, we investigated striatal DSC and RPEs and their association in unmedicated Sz and healthy controls. 23 healthy controls (HC) and 20 unmedicated Sz took part in an FDOPA-PET scan measuring DSC and underwent fMRI scanning, where they performed a reversal learning paradigm. We compared groups regarding DSC und neural RPE signals and probed the respective correlation (23 HC and 16 Sz for both measures). Results There was no significant difference between HC and Sz in DSC. Taking into account comorbid alcohol abuse revealed that only patients without such abuse showed elevated DSC in the associative and sensorimotor striatum, while those with abuse did not differ from HC. Patients performed worse during learning, accompanied by a reduced RPE signal in the ventral striatum. In HC, the DSC in the limbic striatum correlated with higher RPE signaling, while there was no significant association in patients. DSC in the associative striatum correlated with higher positive symptoms, and blunted RPE signaling was associated with negative symptoms. Discussion Our results suggest that dopamine modulation of RPE is impaired in schizophrenia. Furthermore, we observed a dissociation with elevated DSC in the associative and sensorimotor striatum contributing to positive symptoms and blunted RPE in the ventral striatum to negative symptoms.


2020 ◽  
Vol 46 (6) ◽  
pp. 1535-1546
Author(s):  
Teresa Katthagen ◽  
Jakob Kaminski ◽  
Andreas Heinz ◽  
Ralph Buchert ◽  
Florian Schlagenhauf

Abstract Increased striatal dopamine synthesis capacity has consistently been reported in patients with schizophrenia. However, the mechanism translating this into behavior and symptoms remains unclear. It has been proposed that heightened striatal dopamine may blunt dopaminergic reward prediction error signaling during reinforcement learning. In this study, we investigated striatal dopamine synthesis capacity, reward prediction errors, and their association in unmedicated schizophrenia patients (n = 19) and healthy controls (n = 23). They took part in FDOPA-PET and underwent functional magnetic resonance imaging (fMRI) scanning, where they performed a reversal-learning paradigm. The groups were compared regarding dopamine synthesis capacity (Kicer), fMRI neural prediction error signals, and the correlation of both. Patients did not differ from controls with respect to striatal Kicer. Taking into account, comorbid alcohol abuse revealed that patients without such abuse showed elevated Kicer in the associative striatum, while those with abuse did not differ from controls. Comparing all patients to controls, patients performed worse during reversal learning and displayed reduced prediction error signaling in the ventral striatum. In controls, Kicer in the limbic striatum correlated with higher reward prediction error signaling, while there was no significant association in patients. Kicer in the associative striatum correlated with higher positive symptoms and blunted reward prediction error signaling was associated with negative symptoms. Our results suggest a dissociation between striatal subregions and symptom domains, with elevated dopamine synthesis capacity in the associative striatum contributing to positive symptoms while blunted prediction error signaling in the ventral striatum related to negative symptoms.


2018 ◽  
Vol 49 (15) ◽  
pp. 2533-2542 ◽  
Author(s):  
Seoyoung Kim ◽  
Wi Hoon Jung ◽  
Oliver D. Howes ◽  
Mattia Veronese ◽  
Federico E. Turkheimer ◽  
...  

AbstractBackgroundGiven that only a subgroup of patients with schizophrenia responds to first-line antipsychotic drugs, a key clinical question is what underlies treatment response. Observations that prefrontal activity correlates with striatal dopaminergic function, have led to the hypothesis that disrupted frontostriatal functional connectivity (FC) could be associated with altered dopaminergic function. Thus, the aim of this study was to investigate the relationship between frontostriatal FC and striatal dopamine synthesis capacity in patients with schizophrenia who had responded to first-line antipsychotic drug compared with those who had failed but responded to clozapine.MethodsTwenty-four symptomatically stable patients with schizophrenia were recruited from Seoul National University Hospital, 12 of which responded to first-line antipsychotic drugs (first-line AP group) and 12 under clozapine (clozapine group), along with 12 matched healthy controls. All participants underwent resting-state functional magnetic resonance imaging and [18F]DOPA PET scans.ResultsNo significant difference was found in the total PANSS score between the patient groups. Voxel-based analysis showed a significant correlation between frontal FC to the associative striatum and the influx rate constant of [18F]DOPA in the corresponding region in the first-line AP group. Region-of-interest analysis confirmed the result (control group: R2 = 0.019, p = 0.665; first-line AP group: R2 = 0.675, p < 0.001; clozapine group: R2 = 0.324, p = 0.054) and the correlation coefficients were significantly different between the groups.ConclusionsThe relationship between striatal dopamine synthesis capacity and frontostriatal FC is different between responders to first-line treatment and clozapine treatment in schizophrenia, indicating that a different pathophysiology could underlie schizophrenia in patients who respond to first-line treatments relative to those who do not.


Brain ◽  
2020 ◽  
Vol 143 (11) ◽  
pp. 3495-3505 ◽  
Author(s):  
Mihai Avram ◽  
Felix Brandl ◽  
Franziska Knolle ◽  
Jorge Cabello ◽  
Claudia Leucht ◽  
...  

Abstract Aberrant dopamine function in the dorsal striatum and aberrant intrinsic functional connectivity (iFC) between distinct cortical networks and thalamic nuclei are among the most consistent large-scale brain imaging findings in schizophrenia. A pathophysiological link between these two alterations is suggested by theoretical models based on striatal dopamine’s topographic modulation of cortico-thalamic connectivity within cortico-basal-ganglia-thalamic circuits. We hypothesized that aberrant striatal dopamine links topographically with aberrant cortico-thalamic iFC, i.e. aberrant associative striatum dopamine is associated with aberrant iFC between the salience network and thalamus, and aberrant sensorimotor striatum dopamine with aberrant iFC between the auditory-sensorimotor network and thalamus. Nineteen patients with schizophrenia during remission of psychotic symptoms and 19 age- and sex-comparable control subjects underwent simultaneous fluorodihydroxyphenyl-l-alanine PET (18F-DOPA-PET) and resting state functional MRI (rs-fMRI). The influx constant kicer based on 18F-DOPA-PET was used to measure striatal dopamine synthesis capacity; correlation coefficients between rs-fMRI time series of cortical networks and thalamic regions of interest were used to measure iFC. In the salience network-centred system, patients had reduced associative striatum dopamine synthesis capacity, which correlated positively with decreased salience network-mediodorsal-thalamus iFC. This correlation was present in both patients and healthy controls. In the auditory-sensorimotor network-centred system, patients had reduced sensorimotor striatum dopamine synthesis capacity, which correlated positively with increased auditory-sensorimotor network-ventrolateral-thalamus iFC. This correlation was present in patients only. Results demonstrate that reduced striatal dopamine synthesis capacity links topographically with cortico-thalamic intrinsic dysconnectivity in schizophrenia. Data suggest that aberrant striatal dopamine and cortico-thalamic dysconnectivity are pathophysiologically related within dopamine-modulated cortico-basal ganglia-thalamic circuits in schizophrenia.


Brain ◽  
2019 ◽  
Vol 142 (6) ◽  
pp. 1813-1826 ◽  
Author(s):  
Mihai Avram ◽  
Felix Brandl ◽  
Jorge Cabello ◽  
Claudia Leucht ◽  
Martin Scherr ◽  
...  

2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S192-S192
Author(s):  
Rob McCutcheon ◽  
Sameer Jauhar ◽  
Fiona Pepper ◽  
Matthew Nour ◽  
Maria Rogdaki ◽  
...  

Abstract Background Striatal dopamine dysfunction is proposed to underlie symptoms in psychosis, yet it is not known how changes in a single neurotransmitter could underlie the heterogenous presentations that are seen clinically. One hypothesis is that the symptomatic consequences of aberrant dopamine signalling may depend on where within the striatum dysfunction occurs. Positron emission tomography (PET) allows for the measurement of dopamine function across the striatum. However, when using typical atlas-based parcellation methods, the collinearity between measures of dopamine function within each striatal subdivision precludes investigation of this hypothesis. Methods We use a novel and data-driven parcellation method to address the above, and investigate relationships between spatial variability in dopamine synthesis capacity and psychotic symptoms. We employ a multimodal imaging approach combining 18F-DOPA PET and resting state MRI in 29 unmedicated and minimally-treated patients with first episode psychosis and 21 healthy controls. In each participant, we use resting state functional connectivity maps to quantify the functional connectivity of each striatal voxel to cortical networks. Network-specific striatal dopamine synthesis capacity (Kicer) was calculated for the resulting connectivity defined parcellations. Results Connectivity defined parcellations generated Kicer values with equivalent reliability, and significantly greater orthogonality to standard anatomical parcellation methods. Dopamine function within striatal areas connected to the default mode network is strongly associated with negative symptoms (p&lt;0.001). Discussion These findings suggest that individual differences in the topography of striatal dopamine dysfunction contribute to shaping psychotic symptomatology.


Author(s):  
Gemma Modinos ◽  
Anja Richter ◽  
Alice Egerton ◽  
Ilaria Bonoldi ◽  
Matilda Azis ◽  
...  

AbstractPreclinical models propose that increased hippocampal activity drives subcortical dopaminergic dysfunction and leads to psychosis-like symptoms and behaviors. Here, we used multimodal neuroimaging to examine the relationship between hippocampal regional cerebral blood flow (rCBF) and striatal dopamine synthesis capacity in people at clinical high risk (CHR) for psychosis and investigated its association with subsequent clinical and functional outcomes. Ninety-five participants (67 CHR and 28 healthy controls) underwent arterial spin labeling MRI and 18F-DOPA PET imaging at baseline. CHR participants were followed up for a median of 15 months to determine functional outcomes with the global assessment of function (GAF) scale and clinical outcomes using the comprehensive assessment of at-risk mental states (CAARMS). CHR participants with poor functional outcomes (follow-up GAF < 65, n = 25) showed higher rCBF in the right hippocampus compared to CHRs with good functional outcomes (GAF ≥ 65, n = 25) (pfwe = 0.026). The relationship between rCBF in this right hippocampal region and striatal dopamine synthesis capacity was also significantly different between groups (pfwe = 0.035); the association was negative in CHR with poor outcomes (pfwe = 0.012), but non-significant in CHR with good outcomes. Furthermore, the correlation between right hippocampal rCBF and striatal dopamine function predicted a longitudinal increase in the severity of positive psychotic symptoms within the total CHR group (p = 0.041). There were no differences in rCBF, dopamine, or their associations in the total CHR group relative to controls. These findings indicate that altered interactions between the hippocampus and the subcortical dopamine system are implicated in the pathophysiology of adverse outcomes in the CHR state.


Sign in / Sign up

Export Citation Format

Share Document