Acid-catalyzed autohydrolysis of wheat straw to improve sugar recovery

2014 ◽  
Vol 169 ◽  
pp. 1-8 ◽  
Author(s):  
Murat Ertas ◽  
Qiang Han ◽  
Hasan Jameel
Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 487
Author(s):  
Dimitrios Ilanidis ◽  
Stefan Stagge ◽  
Leif J. Jönsson ◽  
Carlos Martín

Biochemical conversion of wheat straw was investigated using hydrothermal pretreatment, enzymatic saccharification, and microbial fermentation. Pretreatment conditions that were compared included autocatalyzed hydrothermal pretreatment at 160, 175, 190, and 205 °C and sulfuric-acid-catalyzed hydrothermal pretreatment at 160 and 190 °C. The effects of using different pretreatment conditions were investigated with regard to (i) chemical composition and enzymatic digestibility of pretreated solids, (ii) carbohydrate composition of pretreatment liquids, (iii) inhibitory byproducts in pretreatment liquids, (iv) furfural in condensates, and (v) fermentability using yeast. The methods used included two-step analytical acid hydrolysis combined with high-performance anion-exchange chromatography (HPAEC), HPLC, ultra-high performance liquid chromatography-electrospray ionization-triple quadrupole-mass spectrometry (UHPLC-ESI-QqQ-MS), and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Lignin recoveries in the range of 108–119% for autocatalyzed hydrothermal pretreatment at 205 °C and sulfuric-acid-catalyzed hydrothermal pretreatment were attributed to pseudolignin formation. Xylose concentration in the pretreatment liquid increased with temperature up to 190 °C and then decreased. Enzymatic digestibility was correlated with the removal of hemicelluloses, which was almost quantitative for the autocatalyzed hydrothermal pretreatment at 205 °C. Except for the pretreatment liquid from the autocatalyzed hydrothermal pretreatment at 205 °C, the inhibitory effects on Saccharomyces cerevisiae yeast were low. The highest combined yield of glucose and xylose was achieved for autocatalyzed hydrothermal pretreatment at 190 °C and the subsequent enzymatic saccharification that resulted in approximately 480 kg/ton (dry weight) raw wheat straw.


Fuel ◽  
2008 ◽  
Vol 87 (17-18) ◽  
pp. 3640-3647 ◽  
Author(s):  
J.A. Pérez ◽  
I. Ballesteros ◽  
M. Ballesteros ◽  
F. Sáez ◽  
M.J. Negro ◽  
...  

2015 ◽  
Vol 129 ◽  
pp. 79-86 ◽  
Author(s):  
Qian-Qian Wu ◽  
Yu-Long Ma ◽  
Xuan Chang ◽  
Yong-Gang Sun

BioResources ◽  
2006 ◽  
Vol 1 (2) ◽  
pp. 248-256 ◽  
Author(s):  
Lingyun Liang ◽  
Zhihuai Mao ◽  
Yebo Li ◽  
Caixia Wan ◽  
Tipeng Wang ◽  
...  

The liquefaction of crop residues in the presence of ethylene glycol, ethylene carbonate, or polyethylene glycol using sulfuric acid as a catalyst was studied. For all experiments, the liquefaction was conducted at 160 ° C and atmospheric pressure. The mass ratio of feedstock to liquefaction solvents used in all the experiments was 30:100. The results show that the acid catalyzed liquefaction process fit a pseudo-first-order kinetics model. Liquefaction yields of 80, 74, and 60% were obtained in 60 minutes of reaction when corn stover was liquefied with ethylene glycol, a mixture of polyethylene glycol and glycerol (9:1, w/w), and ethylene carbonate, respectively. When ethylene carbonate was used as solvent, the liquefaction yields of rice straw and wheat straw were 67% and 73%, respectively, which is lower than that of corn stover (80%). When a mixture of ethylene carbonate and ethylene glycol (8:2, w/w) was used as solvent, the liquefaction yields for corn stover, rice straw and wheat straw were 78, 68, and 70%, respectively.


Sign in / Sign up

Export Citation Format

Share Document