Effects of cutting orientation in poplar wood biomass size reduction on enzymatic hydrolysis sugar yield

2015 ◽  
Vol 194 ◽  
pp. 407-410 ◽  
Author(s):  
Meng Zhang ◽  
Xiaohui Ju ◽  
Xiaoxu Song ◽  
Xiao Zhang ◽  
Z.J. Pei ◽  
...  
Author(s):  
Meng Zhang ◽  
Xiaoxu Song ◽  
P. F. Zhang ◽  
Q. Zhang ◽  
Z. J. Pei ◽  
...  

Cellulosic biofuels can reduce greenhouse gas emissions and the nation’s dependence on foreign oil. In order to convert cellulosic biomass into biofuels, size reduction of biomass is a necessary step. Most related studies in the literature claimed that smaller particles produced higher sugar yields. However, some researchers reported that this claim was not always true. The literature does not have satisfactory explanations for the inconsistence. This paper presents an experimental study on size reduction of poplar wood using a metal cutting process (milling). The results provided one explanation for this inconsistence. It was found for the first time that milling orientation had a strong effect on poplar wood sugar yield. Although smaller poplar particles had a higher sugar yield when they were milled from the same orientation, this trend did not exist for particles milled from different orientations.


2014 ◽  
Vol 18 (1) ◽  
pp. 1-14
Author(s):  
Meng Zhang ◽  
Xiaoxu Song ◽  
Z. J. Pei ◽  
T. W. Deines ◽  
Donghai Wang

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Meng Zhang ◽  
Xiaoxu Song ◽  
T. W. Deines ◽  
Z. J. Pei ◽  
Donghai Wang

Size reduction is the first step for manufacturing biofuels from woody biomass. It is usually performed using milling machines and the particle size is controlled by the size of the sieve installed on a milling machine. There are reported studies about the effects of sieve size on energy consumption in milling of woody biomass. These studies show that energy consumption increased dramatically as sieve size became smaller. However, in these studies, the sugar yield (proportional to biofuel yield) in hydrolysis of the milled woody biomass was not measured. The lack of comprehensive studies about the effects of sieve size on energy consumption in biomass milling and sugar yield in hydrolysis process makes it difficult to decide which sieve size should be selected in order to minimize the energy consumption in size reduction and maximize the sugar yield in hydrolysis. The purpose of this paper is to fill this gap in the literature. In this paper, knife milling of poplar wood was conducted using sieves of three sizes (1, 2, and 4 mm). Results show that, as sieve size increased, energy consumption in knife milling decreased and sugar yield in hydrolysis increased in the tested range of particle sizes.


Author(s):  
Xiaoxu Song ◽  
Meng Zhang ◽  
Z. J. Pei ◽  
T. Deines ◽  
Q. Zhang ◽  
...  

Poplar wood can be used as feedstocks for manufacturing of cellulosic biofuels (e.g., ethanol) as liquid transportation fuels. Producing ethanol from poplar wood involves reducing poplar wood into small particles, hydrolyzing cellulose inside poplar particles to fermentable sugars, and converting these sugars to ethanol. Size reduction is usually done by wood chipping and biomass milling. In the literature on poplar biofuels, there are no reports on particle formation mechanisms or effects of size reduction on sugar yield. One important reason for the lack of such knowledge is that particle formation in current size reduction methods is not well controlled. This paper presents the first attempt to use a lathe to generate poplar particles (or chips) with well controlled mechanisms of chip formation. The objective is to experimentally determine relations among chip thickness, uncut chip cross-section area, shear angle (representing the deformation severity of the chips), crystallinity index, and sugar yield.


2021 ◽  
Vol 55 (5-6) ◽  
pp. 637-647
Author(s):  
ANNA GAŁĄZKA ◽  
JAN SZADKOWSKI

The aim of the present study was to investigate the effect of steam explosion pretreatment, without maintaining the heating temperature, on the yield of enzymatic hydrolysis of wood biomass. Genetically modified poplar wood was used for the investigation. The pretreatment process was conducted at temperatures of 160 °C, 175 °C, 190 °C and 205 °C. Then, the system was rapidly decompressed. The heating medium was water. The chemical composition of biomass was determined before and after the steam explosion and then enzymatic hydrolysis was performed. The results of the chemical composition analysis showed a change in the holocellulose content in the analyzed biomass (about 80% for the native sample and 72% for the biomass sample treated at 205 °C), a decrease in the hemicelluloses content from about 40% (native sample) to 16% for the sample treated at 205 °C. The results of enzymatic hydrolysis showed the lowest glucose extraction efficiency for biomass hydrolysis after the treatment at 160 °C, of only about 9% compared to the theoretical content of glucose from the cellulose contained in hydrolysed wood biomass. The highest results were obtained for the samples treated at 190 °C and 205 °C. The study also estimated the processing costs, as a function of the heating medium (steam, water) and energy source (atomic energy, hard coal, natural gas, biomass), assuming heating with electric heaters. From the economic point of view, it is advantageous to use steam heating medium, and either natural gas or biomass as an energy source.


Author(s):  
Xiaoxu Song ◽  
Meng Zhang ◽  
Z. J. Pei ◽  
Donghai Wang

For the first time, this study demonstrated that the efficiency of enzymatic hydrolysis of poplar wood biomass was drastically enhanced after being pretreated with ultrasonic-assisted dilute acid pretreatment comparing to dilute acid pretreatment only. Three levels of ultrasonic power (0%, 30%, and 70%) were used in pretreatment. Approximately 10–40% improvement in the sugar yield was attained by using ultrasound-assisted dilute acid pretreatment for 15 min. XRD analysis revealed that poplar wood biomass pretreated ultrasonically had lower biomass crystallinity than that pretreated with dilute acid only. The combination of ultrasound irradiation and dilute acid can be a key factor in the disruption of rigid cellulose structures and contributes to the improvement of cellulose saccharification in enzymatic hydrolysis.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Yang Yang ◽  
Meng Zhang ◽  
Donghai Wang

Biofuels derived from cellulosic biomass offer one of the best near- to midterm alternatives to petroleum-based liquid transportation fuels. Biofuel conversion is mainly done through a biochemical pathway in which size reduction, pelleting, pretreatment, enzymatic hydrolysis, and fermentation are main processes. Many studies reveal that biomass particle size dictates the energy consumption in the size reduction. Biomass particle size also influences sugar yield in enzymatic hydrolysis, and biofuel yield in fermentation is approximately proportional to the former enzymatic hydrolysis sugar yield. Most reported studies focus on the effects of biomass particle size on a specific process; as a result, in the current literature, there is no commonly accepted guidance to select the overall optimum particle size in order to minimize the energy consumption and maximize sugar yield. This study presents a comprehensive experimental investigation converting three types of biomass (big bluestem, wheat straw, and corn stover) into fermentable sugars and studies the effects of biomass particle size throughout the multistep bioconversion. Three particle sizes (4 mm, 2 mm, and 1 mm) were produced by knife milling and were pelletized with an ultrasonic pelleting system. Dilute acid method was applied to pretreat biomass before enzymatic hydrolysis. Results suggested 2 mm is the optimum particle size to minimize energy consumption in size reduction and pelleting and to maximize sugar yield among the three particle sizes for big bluestem and wheat straw biomass. Nevertheless, there is no significant difference in sugar yield for corn stover for the three particle sizes.


Author(s):  
Yohanita Restu Widihastuty ◽  
Sutini Sutini ◽  
Aida Nur Ramadhani

Pineapple leaf waste is one agricultural waste that has high cellulose content. Pineapple leaf waste's complex structure contains a bundle of packed fiber that makes it hard to remove lignin and hemicellulose structure, so challenging to produce reducing sugar. Dried pineapple leaf waste pretreated with a grinder to break its complex structure. Delignification process using 2% w/v NaOH solution at 87oC for 60 minutes has been carried out to remove lignin and hemicellulose structure so reducing sugar could be produced. Delignified pineapple leaf waste has been enzymatic hydrolyzed using cellulase enzyme (6 mL, 7 mL, and 8 mL) to produce reducing sugar. The sample was incubated in an incubator shaker at 155 rpm at 45, 55, and 60oC for 72 hours. Determination of reducing sugar yield had been carried out using the Dubois method and HPLC. The model indicated that the optimum operating condition of enzymatic hydrolysis is 7 mL of cellulase enzyme at 55oC to produce 96,673 mg/L reducing sugar. This result indicated that the enzymatic hydrolysis operating condition improved the reducing sugar yield from pineapple leaf waste. The optimum reducing sugar yield can produce biofuel by the saccharification process.


Holzforschung ◽  
2011 ◽  
Vol 65 (4) ◽  
Author(s):  
Fokko Schütt ◽  
Jürgen Puls ◽  
Bodo Saake

Abstract Steam refining was investigated as a pretreatment for enzymatic hydrolysis of poplar wood from a short rotation plantation. The experiments were carried out without debarking to use an economically realistic raw material. Steam refining conditions were varied in the range of 3–30 min and 170–220°C, according to a factorial design created with the software JMP from SAS Institute Inc., Cary, NC, USA. Predicted steaming conditions for highest glucose and xylose yields after enzymatic hydrolysis were at 210°C and 15 min. Control tests under the optimized conditions verified the predicted results. Further pretreatments without bark showed that the enzymes were not significantly inhibited by the bark. The yield of glucose and xylose was 61.9% of theoretical for the experiments with the whole raw material, whereas the yield for the experiments without bark was 63.6%. Alkaline extraction of lignin from the fibers before enzymatic hydrolysis resulted in an increase of glucose yields from mild pretreated fibers and a decrease for severe pretreated fibers. The extracted lignin had a high content of xylose of up to 14% after very mild pretreatments. On the other hand, molecular weights of the extracted lignin increased substantially after pretreatments with a severity factor above 4. Hence, alkaline extraction of the lignin seems only attractive in a narrow range of steaming conditions.


Sign in / Sign up

Export Citation Format

Share Document