Cultivation of Chlorella vulgaris in manure-free piggery wastewater with high-strength ammonium for nutrients removal and biomass production: Effect of ammonium concentration, carbon/nitrogen ratio and pH

2019 ◽  
Vol 273 ◽  
pp. 203-211 ◽  
Author(s):  
Hongli Zheng ◽  
Xiaodan Wu ◽  
Guyue Zou ◽  
Ting Zhou ◽  
Yuhuan Liu ◽  
...  
2018 ◽  
Vol 249 ◽  
pp. 479-486 ◽  
Author(s):  
Hongli Zheng ◽  
Mingzhi Liu ◽  
Qian Lu ◽  
Xiaodan Wu ◽  
Yiwei Ma ◽  
...  

2012 ◽  
Vol 5 (1) ◽  
pp. 103-116 ◽  
Author(s):  
Silvia-Juliana Jerez-Mogollón ◽  
Laura-Viviana Rueda-Quiñonez ◽  
Laura-Yulexi Alfonso-Velazco ◽  
Andrés-Fernando Barajas-Solano ◽  
Crisóstomo Barajas-Ferreira ◽  
...  

This work studied the improvement of biomass and carbohydrate (glucose and xylose) lab–scale productivity in Chlorella vulgaris UTEX 1803 through the use of the carbon/nitrogen ratio. In order to do so, mixotrophic cultures were made by the modification of initial concentration of CH3COONa (5, 10 and 20 mM) and NaNO3 (0.97, 1.94 and 2.94 mM). All treatments were maintained at 23 ± 1ºC, with light/dark cycles of 12h : 12h for 5 days.It was found that in addition to the carbon/nitrogen ratio, time also influences the concentration of biomass and carbohydrates. The treatment containing 10 mM acetate: 1.94 mM nitrate, reached a concentration of 0.79 g/L of biomass, 76.9 μg/mL of xylose and 73.7 μg/mL of glucose in the fifth day. However, the treatmentcontaining 20 mM acetate: 0.97 mM nitrate produced 1.04 g/L of biomass, 78.9 μg/mL of xylose and 77.2 μg/mL of glucose in the third day, while in the same day the treatment containing 0 mM acetate: 2.94 mM nitrate, produced 0.55 g/L of biomass, 40.2 μg/mL of xylose and 31.3 μg/mL of glucose.The use of carbon/nitrogen ratios improved biomass productivity (from 0.55 to 1.04 g/L) as well as xylose (from 40.2 to 78.9 μg/mL) and glucose (from 31.3 to 77.2 μg/mL) concentration, representing an improvement of up to two times the production of both biomass and carbohydrates in only 3 days of culture.


2017 ◽  
Vol 76 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Abril Gómez-Guzmán ◽  
Sergio Jiménez-Magaña ◽  
A. Suggey Guerra-Rentería ◽  
César Gómez-Hermosillo ◽  
F. Javier Parra-Rodríguez ◽  
...  

In this research removal of NH3-N, NO3-N and PO4-P nutrients from municipal wastewater was studied, using Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and an artificial consortium of them. The objective is to analyze the performance of these microorganisms and their consortium, which has not been previously studied for nutrient removal in municipal wastewater. A model wastewater was prepared simulating the physicochemical characteristics found at the wastewater plant in Chapala, Mexico. Experiments were carried out without adding an external carbon source. Results indicate that nutrient removal with Chlorella vulgaris was the most efficient with a removal of 24.03% of NO3-N, 80.62% of NH3-N and 4.30% of PO4-P. With Bacillus cereus the results were 8.40% of NO3-N, 28.80% of NH3-N and 3.80% of PO4-P. The removals with Pseudomonas putida were 2.50% of NO3-N, 41.80 of NH3-N and 4.30% of PO4-P. The consortium of Chlorella vulgaris–Bacillus cereus–Pseudomonas putida removed 29.40% of NO3-N, 4.2% of NH3-N and 8.4% of PO4-P. The highest biomass production was with Bacillus cereus (450 mg/l) followed by Pseudomonas putida (444 mg/l), the consortium (205 mg/l) and Chlorella vulgaris (88.9 mg/l). This study highlights the utility of these microorganisms for nutrient removal in wastewater treatments.


2016 ◽  
Vol 108 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Denise M. Finney ◽  
Charles M. White ◽  
Jason P. Kaye

2013 ◽  
Vol 8 (2) ◽  
pp. 159-178 ◽  

Atrazine, a chlorinated s-triazine group of herbicide is one of the most widely used pesticides in the World. Due to its extensive use, long half-life and various toxic properties, it has very high environmental significance. Up to 22 mg l-1 of atrazine was found in ground water whereas permissible limit of atrazine is in ppb level in drinking water. As per Indian standard there should not be any pesticide present in drinking water. Among many other treatment processes available, Incineration, adsorption, chemical treatment, phytoremediation and biodegradation are the most commonly used ones. Biological degradation of atrazine depends upon various factors like the operating environment, external carbon and nitrogen sources, carbon/ nitrogen ratio (C/N), water content and the bacterial strain. Although, general atrazine degradation pathways are available, the specific pathways in specific conditions are not yet clearly defined. In this paper extensive review has been made on the occurrence of atrazine in surface and ground water bodies, probable sources and causes of its occurrence in water environment, the toxicity of atrazine on various living organisms and its removal by biological processes.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 491
Author(s):  
Kazuki Kano ◽  
Hiroaki Kitazawa ◽  
Keitaro Suzuki ◽  
Ani Widiastuti ◽  
Hiromitsu Odani ◽  
...  

Effects of corn steep liquor (organic fertilizer, OF) and conventional chemical fertilizer (CF) on the growth and yield of bok choy (Brassica rapa var. chinensis) in summer and autumn hydroponic growing systems were compared. When OF and CF were applied with the same amount of total nitrogen in summer cultivation, there was no significant difference between yields; however, the growth rate in OF was slower than in CF. When OF was applied with twice the amount of nitrogen in CF (OF2), bok choy growth and yield were significantly inhibited in summer cultivation, likely owing to dissolved oxygen deficiency and different rates of nitrification and nitrogen absorbance by the plant root. Although the contents of potassium, calcium, and magnesium in bok choy showed no difference among the three treatments in both cultivation seasons, the carbon/nitrogen ratio tended to be higher in OF and OF2 than in CF. Lower nitric acid and higher ascorbic acid content was found in OF and OF2 than in CF. Overall, our results suggest that a comparable yield is expected by using the same nitrogen amount with a conventional recipe of chemical fertilization in autumn cultivation. However, further improvement of hydroponic management is needed in summer cultivation.


Sign in / Sign up

Export Citation Format

Share Document