Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion

2019 ◽  
Vol 286 ◽  
pp. 121368 ◽  
Author(s):  
Jyoti Kainthola ◽  
Ajay S. Kalamdhad ◽  
Vaibhav V. Goud ◽  
Ramesh Goel
Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2561
Author(s):  
Furqan Muhayodin ◽  
Albrecht Fritze ◽  
Oliver Christopher Larsen ◽  
Marcel Spahr ◽  
Vera Susanne Rotter

Rice straw is an agricultural residue produced in abundant quantities. Open burning and plowing back the straw to the fields are common practices for its disposal. In-situ incorporation and burning cause emissions of greenhouse gas and particulate matter. Additionally, the energy potential of rice straw is lost. Anaerobic digestion is a technology that can be potentially used to utilize the surplus rice straw, provide renewable energy, circulate nutrients available in the digestate, and reduce greenhouse gas emissions from rice paddies. An innovative temperature phased anaerobic digestion technology was developed and carried out in a continuous circulating mode of mesophilic and hyperthermophilic conditions in a loop digester (F1). The performance of the newly developed digester was compared with the reference digester (F2) working at mesophilic conditions. Co-digestion of rice straw was carried out with cow manure to optimize the carbon to nitrogen ratio and to provide the essential trace elements required by microorganisms in the biochemistry of methane formation. F1 produced a higher specific methane yield (189 ± 37 L/kg volatile solids) from rice straw compared to F2 (148 ± 36 L/kg volatile solids). Anaerobic digestion efficiency was about 90 ± 20% in F1 and 70 ± 20% in F2. Mass fractions of Fe, Ni, Co, Mo, Cu, and Zn were analyzed over time. The mass fractions of Co, Mo, Cu, and Zn were stable in both digesters. While mass fractions of Fe and Ni were reduced at the end of the digestion period. However, no direct relationship between specific methane yield and reduced mass fraction of Fe and Ni was found. Co-digestion of rice straw with cow manure seems to be a good approach to provide trace elements except for Se.


2016 ◽  
Vol 102 ◽  
pp. 361-369 ◽  
Author(s):  
Bárbara Rincón ◽  
Guillermo Rodríguez-Gutiérrez ◽  
Lucía Bujalance ◽  
Juan Fernández-Bolaños ◽  
Rafael Borja

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Sheng Zhou ◽  
Jining Zhang ◽  
Guoyan Zou ◽  
Shohei Riya ◽  
Masaaki Hosomi

To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20:1 and 30:1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2311 ◽  
Author(s):  
Spyridon Achinas ◽  
Yu Li ◽  
Vasileios Achinas ◽  
Gerrit Jan Willem Euverink

This article intends to promote the usage of potato peels as efficient substrate for the anaerobic digestion process for energy recovery and waste abatement. This study examined the performance of anaerobic digestion of potato peels in different inoculum-to-substrate ratios. In addition, the impact of combined treatment with cow manure and pretreatment of potato peels was examined. It was found that co-digestion of potato peel waste and cow manure yielded up to 237.4 mL CH4/g VSadded, whereas the maximum methane yield from the mono-digestion of potato peels was 217.8 mL CH4/g VSadded. Comparing the co-digestion to mono-digestion of potato peels, co-digestion in PPW/CM ratio of 60:40 increased the methane yield by 10%. In addition, grinding and acid hydrolysis applied to potato peels were positively effective in increasing the methane amount reaching 260.3 and 283.4 mL CH4/g VSadded respectively. Likewise, compared to untreated potato peels, pretreatment led to an elevation of the methane amount by 9% and 17% respectively and alleviated the kinetics of biogas production.


2011 ◽  
Vol 347-353 ◽  
pp. 2555-2558
Author(s):  
Ping Ai ◽  
Yuan Yuan Wang ◽  
Yan Lin Zhang ◽  
Wu Li ◽  
Shui Ping Yan

The anaerobic digestion is an efficient utilization way of crop residues and alkali pretreatment are often used to enhance the degradation. Alkali pretreatment based on Ca(OH)2addition of rice straw was studied.The tests of 3 g/l, 9 g/l Ca(OH)2 addition had an significant effect on enhancing solubilization and rapid acidification, the results were 1521.2 gCOD/l and 935 ml biogas yield of 3 g/l Ca(OH)2addition, 1600.7 gCOD/l and 1200 ml biogas yield of 9 g/l Ca(OH)2addition , compared to 405.5 gCOD/l and 1162 ml of control( 0 g/l Ca(OH)2addition) . The results also showed that tests of 15 g/l , 21 g/l of Ca(OH)2addition were entirely inhibited to biogas yield. The result of the present work implied that although alkali pretreatment to rice straw can significantly enhance solubilization, the inhibition to methane yield was liable to occur.


2014 ◽  
Vol 2014 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Chinenyenwa Nweke ◽  
◽  
Philomena Igbokwe ◽  
Joseph Nwabanne ◽  
◽  
...  

Author(s):  
D. de la Lama-Calvente ◽  
M. J. Fernández-Rodríguez ◽  
J. Llanos ◽  
J. M. Mancilla-Leytón ◽  
R. Borja

AbstractThe biomass valorisation of the invasive brown alga Rugulopteryx okamurae (Dictyotales, Phaeophyceae) is key to curbing the expansion of this invasive macroalga which is generating tonnes of biomass on southern Spain beaches. As a feasible alternative for the biomass management, anaerobic co-digestion is proposed in this study. Although the anaerobic digestion of macroalgae barely produced 177 mL of CH4 g−1 VS, the co-digestion with a C-rich substrate, such as the olive mill solid waste (OMSW, the main waste derived from the two-phase olive oil manufacturing process), improved the anaerobic digestion process. The mixture improved not only the methane yield, but also its biodegradability. The highest biodegradability was found in the mixture 1 R. okamurae—1 OMSW, which improved the biodegradability of the macroalgae by 12.9% and 38.1% for the OMSW. The highest methane yield was observed for the mixture 1 R. okamurae—3 OMSW, improving the methane production of macroalgae alone by 157% and the OMSW methane production by 8.6%. Two mathematical models were used to fit the experimental data of methane production time with the aim of assessing the processes and obtaining the kinetic constants of the anaerobic co-digestion of different combination of R. okamurae and OMSW and both substrates independently. First-order kinetic and the transference function models allowed for appropriately fitting the experimental results of methane production with digestion time. The specific rate constant, k (first-order model) for the mixture 1 R. okamurae- 1.5 OMSW, was 5.1 and 1.3 times higher than that obtained for the mono-digestion of single OMSW and the macroalga, respectively. In the same way, the transference function model revealed that the maximum methane production rate (Rmax) was also found for the mixture 1 R. okamurae—1.5 OMSW (30.4 mL CH4 g−1 VS day−1), which was 1.6 and 2.2 times higher than the corresponding to the mono-digestions of the single OMSW and sole R. okamurae (18.9 and 13.6 mL CH4 g−1 VS day−1), respectively.


Sign in / Sign up

Export Citation Format

Share Document