scholarly journals Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Sheng Zhou ◽  
Jining Zhang ◽  
Guoyan Zou ◽  
Shohei Riya ◽  
Masaaki Hosomi

To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20:1 and 30:1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2561
Author(s):  
Furqan Muhayodin ◽  
Albrecht Fritze ◽  
Oliver Christopher Larsen ◽  
Marcel Spahr ◽  
Vera Susanne Rotter

Rice straw is an agricultural residue produced in abundant quantities. Open burning and plowing back the straw to the fields are common practices for its disposal. In-situ incorporation and burning cause emissions of greenhouse gas and particulate matter. Additionally, the energy potential of rice straw is lost. Anaerobic digestion is a technology that can be potentially used to utilize the surplus rice straw, provide renewable energy, circulate nutrients available in the digestate, and reduce greenhouse gas emissions from rice paddies. An innovative temperature phased anaerobic digestion technology was developed and carried out in a continuous circulating mode of mesophilic and hyperthermophilic conditions in a loop digester (F1). The performance of the newly developed digester was compared with the reference digester (F2) working at mesophilic conditions. Co-digestion of rice straw was carried out with cow manure to optimize the carbon to nitrogen ratio and to provide the essential trace elements required by microorganisms in the biochemistry of methane formation. F1 produced a higher specific methane yield (189 ± 37 L/kg volatile solids) from rice straw compared to F2 (148 ± 36 L/kg volatile solids). Anaerobic digestion efficiency was about 90 ± 20% in F1 and 70 ± 20% in F2. Mass fractions of Fe, Ni, Co, Mo, Cu, and Zn were analyzed over time. The mass fractions of Co, Mo, Cu, and Zn were stable in both digesters. While mass fractions of Fe and Ni were reduced at the end of the digestion period. However, no direct relationship between specific methane yield and reduced mass fraction of Fe and Ni was found. Co-digestion of rice straw with cow manure seems to be a good approach to provide trace elements except for Se.


2016 ◽  
Vol 122 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Sheng Zhou ◽  
Marcell Nikolausz ◽  
Jining Zhang ◽  
Shohei Riya ◽  
Akihiko Terada ◽  
...  

2014 ◽  
Vol 878 ◽  
pp. 473-480 ◽  
Author(s):  
Jin Rong Qiu ◽  
Yun Long Fu ◽  
Qing Yun Liu ◽  
Shun Yi Li ◽  
Hai Jun Peng ◽  
...  

The Gannan region is the largest navel orange planting area in the world and has the largest production in China. However, about 5 million tons of navel orange waste (NOW) produced annually. NOW has a great environmental risk because of its high content of organic matter and moisture. Anaerobic digestion of NOW with high nitrogen content waste is a promising alternative to treat these wastes. The effect of swine manure (SM), waste active sludge (WAS) as co-substrates and different mixing ratio were examined in three batch-scale studies. In the first investigation, co-digestion of NOW with SM resulted low methane yield and high concentration of VFAs. In the second investigation, NOW was co-digested with WAS, the methane yield was improved by 260% when the mixing ratio of NOW to WAS (VS/VS) was shifted from 1:2 to 2:1. In the third investigation, the co-digestion of NOW with SM and WAS was conducted. Co-digestion of three substrates has higher methane yield than that of previous two studies, with the exception of equal amounts of NOW with co-substrates (mixing ratio of NOW to SM to WAS was 2:1:1). The highest methane yield of all experiments was 0.20 m3 kg-1VS added while the mixing ratio of NOW to SM to WAS was 1:2:1. It seemed to obtain stable digestion performance, the mixing ratio of co-substates to NOW should not be lower than 1:1. WAS was a better co-substrate than SM, as WAS was capable to supply more organic nitrogen to create positive synergistic effects.


Author(s):  
Beatriz Molinuevo-Salces ◽  
Berta Riaño ◽  
Matías B. Vanotti ◽  
María C. García-González

BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3017-3028
Author(s):  
Jingjing Fu ◽  
Biao Ma ◽  
Binxing Xu ◽  
Chunsong Guan ◽  
Aibing Wu ◽  
...  

The solid digestate from high solid anaerobic digestion was used as growth medium for seeding production. The garage-type dry fermentation system using bundled rice straw and swine manure was performed to obtain solid digestate. The addition of solid digestate addition greatly influenced the properties of the growth medium. The bulk density increased and the total porosity, pH, and electrical conductivity (EC) values were decreased with the reduction of solid digestate. The solid digestate-based media had a bulk density < 0.3 g/cm3, total porosity > 70%, air filled porosity ~ 3%, water holding porosity > 60%, EC < 3 mS/cm, and 6.5 < pH < 8. Those properties almost satisfied the essential requirements of nursery substrate. Also, the concentrations of nutrients and heavy metals of the substrate exhibited a positive relationship with solid digestate addition, and they are all within acceptable ranges for plant growth. When the addition of solid digestate was 50% (v/v), the germination rate of tomato seeding cultivated in that solid digestate-based growth medium reached 85%. These findings showed that the solid digestate from the high solid anaerobic digestion could be successfully applied in the seeding nursery and merit consideration for industrial applications.


2018 ◽  
Vol 76 ◽  
pp. 350-356 ◽  
Author(s):  
Shohei Riya ◽  
Kazuhiro Suzuki ◽  
Lingyu Meng ◽  
Sheng Zhou ◽  
Akihiko Terada ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2469 ◽  
Author(s):  
Chrysoula Mirtsou-Xanthopoulou ◽  
Ioannis V. Skiadas ◽  
Hariklia N. Gavala

(1) Background: The continuously increasing demand for renewable energy sources renders anaerobic digestion as one of the most promising technologies for renewable energy production. Due to the animal production intensification, manure is being used as the primary feedstock for most biogas plants. Their economical profitable operation, however, relies on increasing the methane yield from the solid fraction of manure, which is not so easily degradable. The solid fraction after anaerobic digestion, the so-called digested fibers, consists mainly of hardly biodegradable material and comes at a lower mass per unit volume of manure compared to the solid fraction before anaerobic digestion. Therefore, investigation on how to increase the biodegradability of digested fibers is very relevant. So far, Aqueous Ammonia Soaking (AAS), has been successfully applied on digested fibers separated from the effluent of a manure-fed, full-scale anaerobic digester to enhance their methane productivity in batch experiments. (2) Methods: In the present study, continuous experiments at a mesophilic (38 °C) CSTR-type anaerobic digester fed with swine manure first and a mixture of manure with AAS-treated digested fibers in the sequel, were performed. Anaerobic Digestion Model 1 (ADM1) previously fitted on manure fed digester was used in order to assess the effect of the addition of AAS-pre-treated digested manure fibers on the kinetics of anaerobic digestion process. (3) Results and Conclusions: The methane yield of AAS-treated digested fibers under continuous operation was 49–68% higher than that calculated in batch experiments in the past. It was found that AAS treatment had a profound effect mainly on the disintegration/hydrolysis rate of particulate carbohydrates. Comparison of the data obtained in the present study with the data obtained with AAS-pre-treated raw manure fibers in the past revealed that hydrolysis kinetics after AAS pre-treatment were similar for both types of biomasses.


1999 ◽  
Vol 33 (8) ◽  
pp. 1805-1810 ◽  
Author(s):  
Kaare Hvid Hansen ◽  
Irini Angelidaki ◽  
Birgitte KiÆr Ahring

Sign in / Sign up

Export Citation Format

Share Document