Comparison of bio-hydrogen and bio-methane production performance in continuous two-phase anaerobic fermentation system between co-digestion and digestate recirculation

2020 ◽  
Vol 318 ◽  
pp. 124269
Author(s):  
Yanjin Wang ◽  
Zhenfeng Wang ◽  
Quanguo Zhang ◽  
Gaoshen Li ◽  
Chenxi Xia
2006 ◽  
Vol 53 (8) ◽  
pp. 271-279 ◽  
Author(s):  
H.N. Gavala ◽  
I.V. Skiadas ◽  
B.K. Ahring ◽  
G. Lyberatos

The present study investigates the thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp; b) anaerobic bio-production of hydrogen from the olive pulp; c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane; and d) development of a mathematical model able to describe the anaerobic digestion of the olive pulp and the effluent of hydrogen producing process. Both continuous and batch experiments were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H2 per g TS. The methane potential of the raw olive pulp and hydrogen-effluent was as high as 19 mmole CH4 per g TS suggesting that: a) olive pulp is a suitable substrate for methane production; and b) biohydrogen production can be very efficiently coupled with a subsequent step for methane production.


2012 ◽  
Vol 608-609 ◽  
pp. 875-879 ◽  
Author(s):  
Yuan Yuan Wang ◽  
Yan Lin Zhang

The two-phase united anaerobic fermentation has been paid more and more attention in recent years. But how to increase the biogas production yield and the degradation rate of organic matter needs more research. The batch anaerobic fermentation studies demonstrated the feasibility of H2 and CH4 generation utilizing kitchen wastewater as substrate, and the vaccination rate, dilution rate, substrate concentration were optimized. The conclusion showed that dilution rate is the most important factor, following by kitchen wastewater concentration and inoculum volume. The most excellent program of the organic load, the inoculation volume and the dilution volume are 150 +300 ml, 135 ml, 225 ml, respectively. Under these conditions the hydrogen and methane production rate were the highest of 4.15 ml/ml,2.55 ml/ml (calculated as the wastewater volume), respectively. The acid-forming pathways of kitchen wastewater was typical butyric- propionic acid mixed fermentation type. The appropriate dilution could decrease the concentration of the total acids and increase the biogas production yield.


2021 ◽  
Vol 10 (2) ◽  
pp. 355-367
Author(s):  
Weiyi Yang ◽  
Yan Chen ◽  
Shuang Gao ◽  
Licheng Sang ◽  
Ruoge Tao ◽  
...  

AbstractPhotocatalysts with the photocatalytic “memory” effect could resolve the intrinsic activity loss of traditional photocatalysts when the light illumination is turned off. Due to the dual requirements of light absorption and energy storage/release functions, most previously reported photocatalysts with the photocatalytic “memory” effect were composite photocatalysts of two phase components, which may lose their performance due to gradually deteriorated interface conditions during their applications. In this work, a simple solvothermal process was developed to synthesize Bi2WO6 microspheres constructed by aggregated nanoflakes. The pure phase Bi2WO6 was found to possess the photocatalytic “memory” effect through the trapping and release of photogenerated electrons by the reversible chemical state change of W component in the (WO4)2− layers. When the illumination was switched off, Bi2WO6 microspheres continuously produced H2O2 in the dark as those trapped photogenerated electrons were gradually released to react with O2 through the two-electron O2 reduction process, resulting in the continuous disinfection of Escherichia coli bacteria in the dark through the photocatalytic “memory” effect. No deterioration of their cycling H2O2 production performance in the dark was observed, which verified their stable photocatalytic “memory” effect.


Author(s):  
D. de la Lama-Calvente ◽  
M. J. Fernández-Rodríguez ◽  
J. Llanos ◽  
J. M. Mancilla-Leytón ◽  
R. Borja

AbstractThe biomass valorisation of the invasive brown alga Rugulopteryx okamurae (Dictyotales, Phaeophyceae) is key to curbing the expansion of this invasive macroalga which is generating tonnes of biomass on southern Spain beaches. As a feasible alternative for the biomass management, anaerobic co-digestion is proposed in this study. Although the anaerobic digestion of macroalgae barely produced 177 mL of CH4 g−1 VS, the co-digestion with a C-rich substrate, such as the olive mill solid waste (OMSW, the main waste derived from the two-phase olive oil manufacturing process), improved the anaerobic digestion process. The mixture improved not only the methane yield, but also its biodegradability. The highest biodegradability was found in the mixture 1 R. okamurae—1 OMSW, which improved the biodegradability of the macroalgae by 12.9% and 38.1% for the OMSW. The highest methane yield was observed for the mixture 1 R. okamurae—3 OMSW, improving the methane production of macroalgae alone by 157% and the OMSW methane production by 8.6%. Two mathematical models were used to fit the experimental data of methane production time with the aim of assessing the processes and obtaining the kinetic constants of the anaerobic co-digestion of different combination of R. okamurae and OMSW and both substrates independently. First-order kinetic and the transference function models allowed for appropriately fitting the experimental results of methane production with digestion time. The specific rate constant, k (first-order model) for the mixture 1 R. okamurae- 1.5 OMSW, was 5.1 and 1.3 times higher than that obtained for the mono-digestion of single OMSW and the macroalga, respectively. In the same way, the transference function model revealed that the maximum methane production rate (Rmax) was also found for the mixture 1 R. okamurae—1.5 OMSW (30.4 mL CH4 g−1 VS day−1), which was 1.6 and 2.2 times higher than the corresponding to the mono-digestions of the single OMSW and sole R. okamurae (18.9 and 13.6 mL CH4 g−1 VS day−1), respectively.


2021 ◽  
pp. 1-23
Author(s):  
Daniel O'Reilly ◽  
Manouchehr Haghighi ◽  
Mohammad Sayyafzadeh ◽  
Matthew Flett

Summary An approach to the analysis of production data from waterflooded oil fields is proposed in this paper. The method builds on the established techniques of rate-transient analysis (RTA) and extends the analysis period to include the transient- and steady-state effects caused by a water-injection well. This includes the initial rate transient during primary production, the depletion period of boundary-dominated flow (BDF), a transient period after injection starts and diffuses across the reservoir, and the steady-state production that follows. RTA will be applied to immiscible displacement using a graph that can be used to ascertain reservoir properties and evaluate performance aspects of the waterflood. The developed solutions can also be used for accurate and rapid forecasting of all production transience and boundary-dominated behavior at all stages of field life. Rigorous solutions are derived for the transient unit mobility displacement of a reservoir fluid, and for both constant-rate-injection and constant-pressure-injection after a period of reservoir depletion. A simple treatment of two-phase flow is given to extend this to the water/oil-displacement problem. The solutions are analytical and are validated using reservoir simulation and applied to field cases. Individual wells or total fields can be studied with this technique; several examples of both will be given. Practical cases are given for use of the new theory. The equations can be applied to production-data interpretation, production forecasting, injection-water allocation, and for the diagnosis of waterflood-performanceproblems. Correction Note: The y-axis of Fig. 8d was corrected to "Dimensionless Decline Rate Integral, qDdi". No other content was changed.


2000 ◽  
Vol 42 (10-11) ◽  
pp. 247-255 ◽  
Author(s):  
J. Paing ◽  
B. Picot ◽  
J. P. Sambuco ◽  
A. Rambaud

Sludge accumulation and the characteristics of anaerobic digestion in sludge had been investigated in a primary anaerobic lagoon. Methanogenic potential of sludge was evaluated by an anaerobic digestion test which measured the methane production rate. Sludge was sampled at several points in the lagoon to determine spatial variations and with a monthly frequency from the start-up of the lagoon to observe the development of anaerobic degradation. Maximum amounts of sludge accumulated near the inlet. The mean methane production of sludge was 2.9 ml gVS–1 d–1. Sludge near the outlet presented a greater methanogenic activity and a lesser concentration of volatile fatty acids than near the inlet. The different stages of anaerobic degradation were spatially separated, acidogenesis near the inlet and methanogenesis near the outlet. This staged distribution seemed to increase efficiency of anaerobic fermentation compared with septic tanks. Methane release at the surface of the lagoon was estimated to be very heterogeneous with a mean of 25 l m–2 d–1. The development of performance and sludge characteristics showed the rapid beginning of methanogenesis, three months after the start-up of the anaerobic lagoon. Considering the volume of accumulated sludge, it could however be expected that methanogenic activity would further increase.


2013 ◽  
Vol 42 (4) ◽  
pp. 235-244
Author(s):  
Kazumasa TONOOKA ◽  
Takuya EBISAWA ◽  
Akihiro NAGANO ◽  
Akihiro OHNISHI ◽  
Naoshi FUJIMOTO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document