Synchronous firing by specific pairs of cercal giant interneurons in crickets encodes wind direction

Biosystems ◽  
2008 ◽  
Vol 93 (3) ◽  
pp. 218-225 ◽  
Author(s):  
Oak Yono ◽  
Tateo Shimozawa
1997 ◽  
Vol 78 (5) ◽  
pp. 2655-2661 ◽  
Author(s):  
Adi Mizrahi ◽  
Frederic Libersat

Mizrahi, Adi and Frederic Libersat. Independent coding of wind direction in cockroach giant interneurons. J. Neurophysiol. 78: 2655–2661, 1997. In this study we examined the possible role of cell-to-cell interactions in the localization processing of a wind stimulus by the cockroach cercal system. Such sensory processing is performed primarily by pairs of giant interneurons (GIs), a group of highly directional cells. We have studied possible interactions among these GIs by comparing the wind sensitivity of a given GI before and after removing another GI with the use of photoablation. Testing various combinations of GI pairs did not reveal any suprathreshold interactions. This was true for all unilateral GI pairs on the left or right side as well as all the bilateral GI pairs (left and right homologues). Those experiments in which we were able to measure synaptic activity did not reveal subthreshold interactions between the GIs either. We conclude that the GIs code independently for a given wind direction without local GI–GI interactions. We discuss the possible implications of the absence of local interactions on information transfer in the first station of the escape circuit.


Atmosphere ◽  
1968 ◽  
Vol 6 (2) ◽  
pp. 23-38 ◽  
Author(s):  
Richmond W. Longley

2008 ◽  
Vol 400-402 ◽  
pp. 935-940 ◽  
Author(s):  
Ying Ge Wang ◽  
Zheng Nong Li ◽  
Bo Gong ◽  
Qiu Sheng Li

Heliostat is the key part of Solar Tower power station, which requires extremely high accuracy in use. But it’s sensitive to gust because of its light structure, so effect of wind load should be taken into account in design. Since structure of heliostat is unusual and different from common ones, experimental investigation on rigid heliostat model using technology of surface pressure mensuration to test 3-dimensional wind loads in wind tunnel was conducted. The paper illustrates distribution and characteristics of reflector’s mean and fluctuating wind pressure while wind direction angle varied from 0° to 180° and vertical angle varied from 0° to 90°. Moreover, a finite element model was constructed to perform calculation on wind-induced dynamic response. The results show that the wind load power spectral change rulers are influenced by longitudinal wind turbulence and vortex and are related with Strouhal number; the fluctuating wind pressures between face and back mainly appear positive correlation, and the correlation coefficients at longitudinal wind direction are smaller than those at lateral direction; the fluctuating wind pressures preferably agree with Gaussian distribution at smaller vertical angle and wind direction angle. The wind-induced response and its spectrums reveal that: when vertical angle is small, the background responsive values of reflector’s different parts are approximately similar; in addition, multi-phased resonant response occurring at the bottom. With the increase of , airflow separates at the near side and reunites at the other, as produces vortex which enhances dynamic response at the upper part.


2021 ◽  
Vol 13 (5) ◽  
pp. 935
Author(s):  
Matthew Varnam ◽  
Mike Burton ◽  
Ben Esse ◽  
Giuseppe Salerno ◽  
Ryunosuke Kazahaya ◽  
...  

SO2 cameras are able to measure rapid changes in volcanic emission rate but require accurate calibrations and corrections to convert optical depth images into slant column densities. We conducted a test at Masaya volcano of two SO2 camera calibration approaches, calibration cells and co-located spectrometer, and corrected both calibrations for light dilution, a process caused by light scattering between the plume and camera. We demonstrate an advancement on the image-based correction that allows the retrieval of the scattering efficiency across a 2D area of an SO2 camera image. When appropriately corrected for the dilution, we show that our two calibration approaches produce final calculated emission rates that agree with simultaneously measured traverse flux data and each other but highlight that the observed distribution of gas within the image is different. We demonstrate that traverses and SO2 camera techniques, when used together, generate better plume speed estimates for traverses and improved knowledge of wind direction for the camera, producing more reliable emission rates. We suggest combining traverses and the SO2 camera should be adopted where possible.


Sign in / Sign up

Export Citation Format

Share Document