Construction of 3D maps of vegetation indices retrieved from UAV multispectral imagery in forested areas

2022 ◽  
Vol 213 ◽  
pp. 76-88
Author(s):  
Juan Villacrés ◽  
Fernando A. Auat Cheein
2021 ◽  
Vol 3 (1) ◽  
pp. 29-49
Author(s):  
Ghizlane Astaoui ◽  
Jamal Eddine Dadaiss ◽  
Imane Sebari ◽  
Samir Benmansour ◽  
Ettarid Mohamed

Our work aims to monitor wheat crop using a variety-based approach by taking into consideration four different phenological stages of wheat crop development. In addition to highlighting the contribution of Red-Edge vegetation indices in mapping wheat dry matter and nitrogen content dynamics, as well as using Random Forest regressor in the estimation of wheat yield, dry matter and nitrogen uptake relying on UAV (Unmanned Aerial Vehicle) multispectral imagery. The study was conducted on an experimental platform with 12 wheat varieties located in Sidi Slimane (Morocco). Several flight missions were conducted using eBee UAV with MultiSpec4C camera according to phenological growth stages of wheat. The proposed methodology is subdivided into two approaches, the first aims to find the most suitable vegetation index for wheat’s biophysical parameters estimation and the second to establish a global model regardless of the varieties to estimate the biophysical parameters of wheat: Dry matter and nitrogen uptake. The two approaches were conducted according to six main steps: (1) UAV flight missions and in-situ data acquisition during four phenological stages of wheat development, (2) Processing of UAV multispectral images which enabled us to elaborate the vegetation indices maps (RTVI, MTVI2, NDVI, NDRE, GNDVI, GNDRE, SR-RE et SR-NIR), (3) Automatic extraction of plots by Object-based image analysis approach and creating a spatial database combining the spectral information and wheat’s biophysical parameters, (4) Monitoring wheat growth by generating dry biomass and wheat’s nitrogen uptake model using exponential, polynomial and linear regression for each variety this step resumes the varietal approach, (5) Engendering a global model employing both linear regression and Random Forest technique, (6) Wheat yield estimation. The proposed method has allowed to predict from 1 up to 21% difference between actual and estimated yield when using both RTVI index and Random Forest technique as well as mapping wheat’s dry biomass and nitrogen uptake along with the nitrogen nutrition index (NNI) and therefore facilitate a careful monitoring of the health and the growth of wheat crop. Nevertheless, some wheat varieties have shown a significant difference in yield between 2.6 and 3.3 t/ha.


Drones ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 80 ◽  
Author(s):  
Kaori Otsu ◽  
Magda Pla ◽  
Andrea Duane ◽  
Adrián Cardil ◽  
Lluís Brotons

Periodical outbreaks of Thaumetopoea pityocampa feeding on pine needles may pose a threat to Mediterranean coniferous forests by causing severe tree defoliation, growth reduction, and eventually mortality. To cost–effectively monitor the temporal and spatial damages in pine–oak mixed stands using unmanned aerial systems (UASs) for multispectral imagery, we aimed at developing a simple thresholding classification tool for forest practitioners as an alternative method to complex classifiers such as Random Forest. The UAS flights were performed during winter 2017–2018 over four study areas in Catalonia, northeastern Spain. To detect defoliation and further distinguish pine species, we conducted nested histogram thresholding analyses with four UAS-derived vegetation indices (VIs) and evaluated classification accuracy. The normalized difference vegetation index (NDVI) and NDVI red edge performed the best for detecting defoliation with an overall accuracy of 95% in the total study area. For discriminating pine species, accuracy results of 93–96% were only achievable with green NDVI in the partial study area, where the Random Forest classification combined for defoliation and tree species resulted in 91–93%. Finally, we achieved to estimate the average thresholds of VIs for detecting defoliation over the total area, which may be applicable across similar Mediterranean pine stands for monitoring regional forest health on a large scale.


2018 ◽  
Vol 11 (1) ◽  
pp. 23 ◽  
Author(s):  
Johanna Albetis ◽  
Anne Jacquin ◽  
Michel Goulard ◽  
Hervé Poilvé ◽  
Jacques Rousseau ◽  
...  

Among grapevine diseases affecting European vineyards, Flavescence dorée (FD) and Grapevine Trunk Diseases (GTD) are considered the most relevant challenges for viticulture because of the damage they cause to vineyards. Unmanned Aerial Vehicle (UAV) multispectral imagery could be a powerful tool for the automatic detection of symptomatic vines. However, one major difficulty is to discriminate different kinds of diseases leading to similar leaves discoloration as it is the case with FD and GTD for red vine cultivars. The objective of this paper is to evaluate the potentiality of UAV multispectral imagery to separate: symptomatic vines including FD and GTD (Esca and black dead arm) from asymptomatic vines (Case 1) and FD vines from GTD ones (Case 2). The study sites are localized in the Gaillac and Minervois wine production regions (south of France). A set of seven vineyards covering five different red cultivars was studied. Field work was carried out between August and September 2016. In total, 218 asymptomatic vines, 502 FD vines and 199 GTD vines were located with a centimetric precision GPS. UAV multispectral images were acquired with a MicaSense RedEdge® sensor and were processed to ultimately obtain surface reflectance mosaics at 0.10 m ground spatial resolution. In this study, the potentiality of 24 variables (5 spectral bands, 15 vegetation indices and 4 biophysical parameters) are tested. The vegetation indices are selected for their potentiality to detect abnormal vegetation behavior in relation to stress or diseases. Among the biophysical parameters selected, three are directly linked to the leaf pigments content (chlorophyll, carotenoid and anthocyanin). The first step consisted in evaluating the performance of the 24 variables to separate symptomatic vine vegetation (FD or/and GTD) from asymptomatic vine vegetation using the performance indicators from the Receiver Operator Characteristic (ROC) Curve method (i.e., Area Under Curve or AUC, sensibility and specificity). The second step consisted in mapping the symptomatic vines (FD and/or GTD) at the scale of the field using the optimal threshold resulting from the ROC curve. Ultimately, the error between the level of infection predicted by the selected variables (proportion of symptomatic pixels by vine) and observed in the field (proportion of symptomatic leaves by vine) is calculated. The same methodology is applied to the three levels of analysis: by vineyard, by cultivar (Gamay, Fer Servadou) and by berry color (all red cultivars). At the vineyard and cultivar levels, the best variables selected varies. The AUC of the best vegetation indices and biophysical parameters varies from 0.84 to 0.95 for Case 1 and 0.74 to 0.90 for Case 2. At the berry color level, no variable is efficient in discriminating FD vines from GTD ones (Case 2). For Case 1, the best vegetation indices and biophysical parameter are Red Green Index (RGI)/ Green-Red Vegetation Index (GRVI) (based on the green and red spectral bands) and Car (linked to carotenoid content). These variables are more effective in mapping vines with a level of infection greater than 50%. However, at the scale of the field, we observe misclassified pixels linked to the presence of mixed pixels (shade, bare soil, inter-row vegetation and vine vegetation) and other factors of abnormal coloration (e.g., apoplectic vines).


2021 ◽  
Vol 13 (15) ◽  
pp. 2948
Author(s):  
Claudio I. Fernández ◽  
Brigitte Leblon ◽  
Jinfei Wang ◽  
Ata Haddadi ◽  
Keri Wang

This study used close-range multispectral imagery over cucumber plants inside a commercial greenhouse to detect powdery mildew due to Podosphaera xanthii. It was collected using a MicaSense® RedEdge camera at 1.5 m over the top of the plant. Image registration was performed using Speeded-Up Robust Features (SURF) with an affine geometric transformation. The image background was removed using a binary mask created with the aligned NIR band of each image, and the illumination was corrected using Cheng et al.’s algorithm. Different features were computed, including RGB, image reflectance values, and several vegetation indices. For each feature, a fine Gaussian Support Vector Machines algorithm was trained and validated to classify healthy and infected pixels. The data set to train and validate the SVM was composed of 1000 healthy and 1000 infected pixels, split 70–30% into training and validation datasets, respectively. The overall validation accuracy was 89, 73, 82, 51, and 48%, respectively, for blue, green, red, red-edge, and NIR band image. With the RGB images, we obtained an overall validation accuracy of 89%, while the best vegetation index image was the PMVI-2 image which produced an overall accuracy of 81%. Using the five bands together, overall accuracy dropped from 99% in the training to 57% in the validation dataset. While the results of this work are promising, further research should be considered to increase the number of images to achieve better training and validation datasets.


2021 ◽  
Vol 13 (16) ◽  
pp. 3105
Author(s):  
Jody Yu ◽  
Jinfei Wang ◽  
Brigitte Leblon

Management of nitrogen (N) fertilizers is an important agricultural practice and field of research to minimize environmental impacts and the cost of production. To apply N fertilizer at the right rate, time, and place depends on the crop type, desired yield, and field conditions. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery, vegetation indices (VI), crop height, field topographic metrics, and soil properties to predict canopy nitrogen weight (g/m2) of a corn field in southwestern Ontario, Canada. Random Forests (RF) and support vector regression (SVR) models were evaluated for canopy nitrogen weight prediction from 29 variables. RF consistently had better performance than SVR, and the top-performing validation model was RF using 15 selected height, spectral, and topographic variables with an R2 of 0.73 and Root Mean Square Error (RMSE) of 2.21 g/m2. Of the model’s 15 variables, crop height was the most important predictor, followed by 10 VIs, three MicaSense band reflectance mosaics (blue, red, and green), and topographic profile curvature. The model information can be used to improve field nitrogen prediction, leading to more effective and efficient N fertilizer management.


2013 ◽  
Author(s):  
Maria Zoran ◽  
Roxana Savastru ◽  
Dan Savastru ◽  
Marina Tautan ◽  
Sorin Miclos ◽  
...  

2020 ◽  
Vol 12 (16) ◽  
pp. 2618
Author(s):  
Łukasz Jełowicki ◽  
Konrad Sosnowicz ◽  
Wojciech Ostrowski ◽  
Katarzyna Osińska-Skotak ◽  
Krzysztof Bakuła

This research is related to the exploitation of multispectral imagery from an unmanned aerial vehicle (UAV) in the assessment of damage to rapeseed after winter. Such damage is one of a few cases for which reimbursement may be claimed in agricultural insurance. Since direct measurements are difficult in such a case, mainly because of large, unreachable areas, it is therefore important to be able to use remote sensing in the assessment of the plant surface affected by frost damage. In this experiment, UAV images were taken using a Sequoia multispectral camera that collected data in four spectral bands: green, red, red-edge, and near-infrared. Data were acquired from three altitudes above the ground, which resulted in different ground sampling distances. Within several tests, various vegetation indices, calculated based on four spectral bands, were used in the experiment (normalized difference vegetation index (NDVI), normalized difference vegetation index—red edge (NDVI_RE), optimized soil adjusted vegetation index (OSAVI), optimized soil adjusted vegetation index—red edge (OSAVI_RE), soil adjusted vegetation index (SAVI), soil adjusted vegetation index—red edge (SAVI_RE)). As a result, selected vegetation indices were provided to classify the areas which qualified for reimbursement due to frost damage. The negative influence of visible technical roads was proved and eliminated using OBIA (object-based image analysis) to select and remove roads from classified images selected for classification. Detection of damaged areas was performed using three different approaches, one object-based and two pixel-based. Different ground sampling distances and different vegetation indices were tested within the experiment, which demonstrated the possibility of using the modern low-altitude photogrammetry of a UAV platform with a multispectral sensor in applications related to agriculture. Within the tests performed, it was shown that detection using UAV-based multispectral data can be a successful alternative for direct measurements in a field to estimate the area of winterkill damage. The best results were achieved in the study of damage detection using OSAVI and NDVI and images with ground sampling distance (GSD) = 10 cm, with an overall classification accuracy of 95% and a F1-score value of 0.87. Other results of approaches with different flight settings and vegetation indices were also promising.


2019 ◽  
Vol 9 (24) ◽  
pp. 5314 ◽  
Author(s):  
Marica Franzini ◽  
Giulia Ronchetti ◽  
Giovanna Sona ◽  
Vittorio Casella

This paper is about the geometric and radiometric consistency of diverse and overlapping datasets acquired with the Parrot Sequoia camera. The multispectral imagery datasets were acquired above agricultural fields in Northern Italy and radiometric calibration images were taken before each flight. Processing was performed with the Pix4Dmapper suite following a single-block approach: images acquired in different flight missions were processed in as many projects, where different block orientation strategies were adopted and compared. Results were assessed in terms of geometric and radiometric consistency in the overlapping areas. The geometric consistency was evaluated in terms of point cloud distance using iterative closest point (ICP), while the radiometric consistency was analyzed by computing the differences between the reflectance maps and vegetation indices produced according to adopted processing strategies. For normalized difference vegetation index (NDVI), a comparison with Sentinel-2 was also made. This paper will present results obtained for two (out of several) overlapped blocks. The geometric consistency is good (root mean square error (RMSE) in the order of 0.1 m), except for when direct georeferencing is considered. Radiometric consistency instead presents larger problems, especially in some bands and in vegetation indices that have differences above 20%. The comparison with Sentinel-2 products shows a general overestimation of Sequoia data but with similar spatial variations (Pearson’s correlation coefficient of about 0.7, p-value < 2.2 × 10−16).


2018 ◽  
Vol 10 (8) ◽  
pp. 1216 ◽  
Author(s):  
Jonathan Dash ◽  
Grant Pearse ◽  
Michael Watt

The development of methods that can accurately detect physiological stress in forest trees caused by biotic or abiotic factors is vital for ensuring productive forest systems that can meet the demands of the Earth’s population. The emergence of new sensors and platforms presents opportunities to augment traditional practices by combining remotely-sensed data products to provide enhanced information on forest condition. We tested the sensitivity of multispectral imagery collected from time-series unmanned aerial vehicle (UAV) and satellite imagery to detect herbicide-induced stress in a carefully controlled experiment carried out in a mature Pinus radiata D. Don plantation. The results revealed that both data sources were sensitive to physiological stress in the study trees. The UAV data were more sensitive to changes at a finer spatial resolution and could detect stress down to the level of individual trees. The satellite data tested could only detect physiological stress in clusters of four or more trees. Resampling the UAV imagery to the same spatial resolution as the satellite imagery revealed that the differences in sensitivity were not solely the result of spatial resolution. Instead, vegetation indices suited to the sensor characteristics of each platform were required to optimise the detection of physiological stress from each data source. Our results define both the spatial detection threshold and the optimum vegetation indices required to implement monitoring of this forest type. A comparison between time-series datasets of different spectral indices showed that the two sensors are compatible and can be used to deliver an enhanced method for monitoring physiological stress in forest trees at various scales. We found that the higher resolution UAV imagery was more sensitive to fine-scale instances of herbicide induced physiological stress than the RapidEye imagery. Although less sensitive to smaller phenomena the satellite imagery was found to be very useful for observing trends in physiological stress over larger areas.


Sign in / Sign up

Export Citation Format

Share Document