scholarly journals Detecting Infected Cucumber Plants with Close-Range Multispectral Imagery

2021 ◽  
Vol 13 (15) ◽  
pp. 2948
Author(s):  
Claudio I. Fernández ◽  
Brigitte Leblon ◽  
Jinfei Wang ◽  
Ata Haddadi ◽  
Keri Wang

This study used close-range multispectral imagery over cucumber plants inside a commercial greenhouse to detect powdery mildew due to Podosphaera xanthii. It was collected using a MicaSense® RedEdge camera at 1.5 m over the top of the plant. Image registration was performed using Speeded-Up Robust Features (SURF) with an affine geometric transformation. The image background was removed using a binary mask created with the aligned NIR band of each image, and the illumination was corrected using Cheng et al.’s algorithm. Different features were computed, including RGB, image reflectance values, and several vegetation indices. For each feature, a fine Gaussian Support Vector Machines algorithm was trained and validated to classify healthy and infected pixels. The data set to train and validate the SVM was composed of 1000 healthy and 1000 infected pixels, split 70–30% into training and validation datasets, respectively. The overall validation accuracy was 89, 73, 82, 51, and 48%, respectively, for blue, green, red, red-edge, and NIR band image. With the RGB images, we obtained an overall validation accuracy of 89%, while the best vegetation index image was the PMVI-2 image which produced an overall accuracy of 81%. Using the five bands together, overall accuracy dropped from 99% in the training to 57% in the validation dataset. While the results of this work are promising, further research should be considered to increase the number of images to achieve better training and validation datasets.

2021 ◽  
Vol 13 (22) ◽  
pp. 4560
Author(s):  
Lili Luo ◽  
Qingrui Chang ◽  
Qi Wang ◽  
Yong Huang

Prompt monitoring of maize dwarf mosaic virus (MDMV) is critical for the prevention and control of disease and to ensure high crop yield and quality. Here, we first analyzed the spectral differences between MDMV-infected red leaves and healthy leaves and constructed a sensitive index (SI) for measurements. Next, based on the characteristic bands (Rλ) associated with leaf anthocyanins (Anth), we determined vegetation indices (VIs) commonly used in plant physiological and biochemical parameter inversion and established a vegetation index (VIc) by utilizing the combination of two arbitrary bands following the construction principles of NDVI, DVI, RVI, and SAVI. Furthermore, we developed classification models based on linear discriminant analysis (LDA) and support vector machine (SVM) in order to distinguish the red leaves from healthy leaves. Finally, we performed UR, MLR, PLSR, PCR, and SVM simulations on Anth based on Rλ, VIs, VIc, and Rλ + VIs + VIc and indirectly estimated the severity of MDMV infection based on the relationship between the reflection spectra and Anth. Distinct from those of the normal leaves, the spectra of red leaves showed strong reflectance characteristics at 640 nm, and SI increased with increasing Anth. Moreover, the accuracy of the two VIc-based classification models was 100%, which is significantly higher than that of the VIs and Rλ-based models. Among the Anth regression models, the accuracy of the MLR model based on Rλ + VIs + VIc was the highest (R2c = 0.85; R2v = 0.74). The developed models could accurately identify MDMV and estimate the severity of its infection, laying the theoretical foundation for large-scale remote sensing-based monitoring of this virus in the future.


Author(s):  
Michael Marszalek ◽  
Maximilian Lösch ◽  
Marco Körner ◽  
Urs Schmidhalter

Crop type and field boundary mapping enable cost-efficient crop management on the field scale and serve as the basis for yield forecasts. Our study uses a data set with crop types and corresponding field borders from the federal state of Bavaria, Germany, as documented by farmers from 2016 to 2018. The study classified corn, winter wheat, barley, sugar beet, potato, and rapeseed as the main crops grown in Upper Bavaria. Corresponding Sentinel-2 data sets include the normalised difference vegetation index (NDVI) and raw band data from 2016 to 2018 for each selected field. The influences of clouds, raw bands, and NDVI on crop type classification are analysed, and the classification algorithms, i.e., support vector machine (SVM) and random forest (RF), are compared. Field boundary detection and extraction are based on non-iterative clustering and a newly developed procedure based on Canny edge detection. The results emphasise the application of Sentinel’s raw bands (B1–B12) and RF, which outperforms SVM with an accuracy of up to 94%. Furthermore, we forecast data for an unknown year, which slightly reduces the classification accuracy. The results demonstrate the usefulness of the proof-of-concept and its readiness for use in real applications.


Author(s):  
I. Cortesi ◽  
A. Masiero ◽  
M. De Giglio ◽  
G. Tucci ◽  
M. Dubbini

Abstract. Plastic pollution has become one of the main global environmental emergencies. A considerable part of used plastics materials is dispersed or accumulated in the environment with a significant damaging impact on many terrestrial and aquatic ecosystems.Artificial Intelligence has proven a fundamental approach in last years for the detection of plastics waste in the aquatic habitats: several groups have recently tried to tackle such problem by developing some machine learning-based methods and multispectral or RGB imagery. This study compares the results obtained by two machine learning classifiers, namely Random Forests and Support Vector Machine, to detect macroplastic in the fluvial habitat through multispectral imagery. The acquisition of images has been made with a hand-held multispectral camera called MAIA-WV2. Despite the obtained results are quite good in terms of accuracy in a random validation dataset, some issues, mostly related to the presence of white rocks and glares on water have still to be properly solved.


Drones ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 80 ◽  
Author(s):  
Kaori Otsu ◽  
Magda Pla ◽  
Andrea Duane ◽  
Adrián Cardil ◽  
Lluís Brotons

Periodical outbreaks of Thaumetopoea pityocampa feeding on pine needles may pose a threat to Mediterranean coniferous forests by causing severe tree defoliation, growth reduction, and eventually mortality. To cost–effectively monitor the temporal and spatial damages in pine–oak mixed stands using unmanned aerial systems (UASs) for multispectral imagery, we aimed at developing a simple thresholding classification tool for forest practitioners as an alternative method to complex classifiers such as Random Forest. The UAS flights were performed during winter 2017–2018 over four study areas in Catalonia, northeastern Spain. To detect defoliation and further distinguish pine species, we conducted nested histogram thresholding analyses with four UAS-derived vegetation indices (VIs) and evaluated classification accuracy. The normalized difference vegetation index (NDVI) and NDVI red edge performed the best for detecting defoliation with an overall accuracy of 95% in the total study area. For discriminating pine species, accuracy results of 93–96% were only achievable with green NDVI in the partial study area, where the Random Forest classification combined for defoliation and tree species resulted in 91–93%. Finally, we achieved to estimate the average thresholds of VIs for detecting defoliation over the total area, which may be applicable across similar Mediterranean pine stands for monitoring regional forest health on a large scale.


Author(s):  
M. Ustuner ◽  
F. B. Sanli ◽  
S. Abdikan ◽  
M. T. Esetlili ◽  
Y. Kurucu

Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.


Author(s):  
B. K. Kenduiywo ◽  
A. Ghosh ◽  
R. Hijmans ◽  
L. Ndungu

Abstract. Monitoring staple crop production can support agricultural research, business such as crop insurance, and government policy. Obtaining accurate estimates through field work is very expensive, and estimating it through remote sensing is promising. We estimated county-level maize yield for the 37 maize producing countries in Kenya from 2010 to 2017 using Moderate Resolution Imaging Spectroradiometer (MODIS) data. Support Vector Regression (SVR) and Random Forest (RF) were used to fit models with observed county level maize yield as a function of vegetation indices. The following five MODIS vegetation indices were used: green normalized difference vegetation index, normalized difference vegetation index, normalized difference moisture index, gross primary production, and fraction of photosynthetically active radiation. The models were evaluated with 5-fold leave one year out cross-validation. For SVR, R2 was 0.70, the Root Mean Square Error (RMSE) was 0.50 MT/ha and Mean Absolute Percentage Error (MAPE) was 27.6%. On the other hand for RF these were 0.69, 0.51 MT/ha and 29.3% respectively. These results are promising and should be tested in specific applications to understand if they are good enough for use.


OENO One ◽  
2020 ◽  
Vol 54 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Marco Sozzi ◽  
Ahmed Kayad ◽  
Francesco Marinello ◽  
James Taylor ◽  
Bruno Tisseyre

Aim: The recent availability of Sentinel-2 satellites has led to an increasing interest in their use in viticulture. The aim of this short communication is to determine performance and limitation of a Sentinel-2 vegetation index in precision viticulture applications, in terms of correlation and variability assessment, compared to the same vegetation index derived from an unmanned aerial vehicle (UAV). Normalised difference vegetation index (NDVI) was used as reference vegetation index.Methods and Results: UAV and Sentinel-2 vegetation indices were acquired for 30 vineyard blocks located in the south of France without inter-row grass. From the UAV imagery, the vegetation index was calculated using both a mixed pixels approach (both vine and inter-row) and from pure vine-only pixels. In addition, the vine projected area data were extracted using a support vector machine algorithm for vineyard segmentation. The vegetation index was obtained from Sentinel-2 imagery obtained at approximately the same time as the UAV imagery. The Sentinel-2 images used a mixed pixel approach as pixel size is greater than the row width. The correlation between these three layers and the Sentinel-2 derived vegetation indices were calculated, considering spatial autocorrelation correction for the significance test. The Gini coefficient was used to estimate variability detected by each sensor at the within-field scale. The effects of block border and dimension on correlations were estimated.Conclusions: The comparison between Sentinel-2 and UAV vegetation index showed an increase in correlation when border pixels were removed. Block dimensions did not affect the significance of correlation unless blocks were < 0.5 ha. Below this threshold, the correlation was non-significant in most cases. Sentinel-2 acquired data were strongly correlated with UAV-acquired data at both the field (R2 = 0.87) and sub-field scale (R2 = 0.84). In terms of variability detected, Sentinel-2 proved to be able to detect the same amount of variability as the UAV mixed pixel vegetation index.Significance and impact of the study: This study showed at which field conditions the Sentinel-2 vegetation index can be used instead of UAV-acquired images when high spatial resolution (vine-specific) management is not needed and the vineyard is characterised by no inter-row grass. This type of information may help growers to choose the most appropriate information sources to detect variability according to their vineyard characteristics.


2019 ◽  
Vol 11 (4) ◽  
pp. 455 ◽  
Author(s):  
Limin Wang ◽  
Qinghan Dong ◽  
Lingbo Yang ◽  
Jianmeng Gao ◽  
Jia Liu

Vegetation indices, such as the normalized difference vegetation index (NDVI) or enhanced vegetation index (EVI) derived from remote sensing images, are widely used for crop classification. However, vegetation index profiles for different crops with a similar phenology lead to difficulties in discerning these crops both spectrally and temporally. This paper proposes a feature filtering and enhancement (FFE) method to map soybean and maize, two major crops widely cultivated during the summer season in Northeastern China. Different vegetation indices are first calculated and the probability density functions (PDFs) of these indices for the target classes are established based on the hypothesis of normal distribution; the vegetation index images are then filtered using the PDFs to obtain enhanced index images where the pixel values of the target classes are ”enhanced”. Subsequently, the minimum Gini index of each enhanced index image is computed, generating at the same time the weight for every index. A composite enhanced feature image is produced by summing all indices with their weights. Finally, a classification is made from the composite enhanced feature image by thresholding, which is derived automatically based on the samples. The efficiency of the proposed FFE method is compared with the maximum likelihood classification (MLC), support vector machine (SVM), and random forest (RF) in a mapping operation to determine the soybean and maize distribution in a county in Northeastern China. The classification accuracies resulting from this comparison show that the FFE method outperforms MLC, and its accuracies are similar to those of SVM and RF, with an overall accuracy of 0.902 and a kappa coefficient of 0.846. This indicates that the FFE method is an appropriate method for crop classification to distinguish crops with a similar phenology. Our research also shows that when the sample size reaches a certain level (e.g., 2000), the mean and standard deviation of the sample are very close to the actual values, which leads to high classification accuracy. In a case where the condition of normal distribution is not fulfilled, the PDF of the vegetation index can be created by a lookup table. Furthermore, as the method is rather simple and explicit, and convenient in terms of computing, it can be used as the backbone for automatic crop mapping operations.


2021 ◽  
Vol 13 (2) ◽  
pp. 278
Author(s):  
Qiong Zheng ◽  
Huichun Ye ◽  
Wenjiang Huang ◽  
Yingying Dong ◽  
Hao Jiang ◽  
...  

Wheat yellow rust has a severe impact on wheat production and threatens food security in China; as such, an effective monitoring method is necessary at the regional scale. We propose a model for yellow rust monitoring based on Sentinel-2 multispectral images and a series of two-stage vegetation indices and meteorological data. Sensitive spectral vegetation indices (single- and two-stage indices) and meteorological features for wheat yellow rust discrimination were selected using the random forest method. Wheat yellow rust monitoring models were established using three different classification methods: linear discriminant analysis (LDA), support vector machine (SVM), and artificial neural network (ANN). The results show that models based on two-stage indices (i.e., those calculated using images from two different days) significantly outperform single-stage index models (i.e., those calculated using an image from a single day), the overall accuracy improved from 63.2% to 78.9%. The classification accuracies of models combining a vegetation index with meteorological feature are higher than those of pure vegetation index models. Among them, the model based on two-stage vegetation indices and meteorological features performs best, with a classification accuracy exceeding 73.7%. The SVM algorithm performed best for wheat yellow rust monitoring among the three algorithms; its classification accuracy (84.2%) was ~10.5% and 5.3% greater than those of LDA and ANN, respectively. Combined with crop growth and environmental information, our model has great potential for monitoring wheat yellow rust at a regional scale. Future work will focus on regional-scale monitoring and forecasting of crop disease.


2021 ◽  
Vol 13 (16) ◽  
pp. 3105
Author(s):  
Jody Yu ◽  
Jinfei Wang ◽  
Brigitte Leblon

Management of nitrogen (N) fertilizers is an important agricultural practice and field of research to minimize environmental impacts and the cost of production. To apply N fertilizer at the right rate, time, and place depends on the crop type, desired yield, and field conditions. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery, vegetation indices (VI), crop height, field topographic metrics, and soil properties to predict canopy nitrogen weight (g/m2) of a corn field in southwestern Ontario, Canada. Random Forests (RF) and support vector regression (SVR) models were evaluated for canopy nitrogen weight prediction from 29 variables. RF consistently had better performance than SVR, and the top-performing validation model was RF using 15 selected height, spectral, and topographic variables with an R2 of 0.73 and Root Mean Square Error (RMSE) of 2.21 g/m2. Of the model’s 15 variables, crop height was the most important predictor, followed by 10 VIs, three MicaSense band reflectance mosaics (blue, red, and green), and topographic profile curvature. The model information can be used to improve field nitrogen prediction, leading to more effective and efficient N fertilizer management.


Sign in / Sign up

Export Citation Format

Share Document