scholarly journals Evaluation of Soil Properties, Topographic Metrics, Plant Height, and Unmanned Aerial Vehicle Multispectral Imagery Using Machine Learning Methods to Estimate Canopy Nitrogen Weight in Corn

2021 ◽  
Vol 13 (16) ◽  
pp. 3105
Author(s):  
Jody Yu ◽  
Jinfei Wang ◽  
Brigitte Leblon

Management of nitrogen (N) fertilizers is an important agricultural practice and field of research to minimize environmental impacts and the cost of production. To apply N fertilizer at the right rate, time, and place depends on the crop type, desired yield, and field conditions. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery, vegetation indices (VI), crop height, field topographic metrics, and soil properties to predict canopy nitrogen weight (g/m2) of a corn field in southwestern Ontario, Canada. Random Forests (RF) and support vector regression (SVR) models were evaluated for canopy nitrogen weight prediction from 29 variables. RF consistently had better performance than SVR, and the top-performing validation model was RF using 15 selected height, spectral, and topographic variables with an R2 of 0.73 and Root Mean Square Error (RMSE) of 2.21 g/m2. Of the model’s 15 variables, crop height was the most important predictor, followed by 10 VIs, three MicaSense band reflectance mosaics (blue, red, and green), and topographic profile curvature. The model information can be used to improve field nitrogen prediction, leading to more effective and efficient N fertilizer management.

2020 ◽  
Vol 12 (13) ◽  
pp. 2071
Author(s):  
Hwang Lee ◽  
Jinfei Wang ◽  
Brigitte Leblon

The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research due to the environmental and economic impact of N fertilization. Excess N could seep into the water supplies around the field and cause unnecessary spending by the farmer. The drawbacks of N deficiency on crops include poor plant growth, ultimately reducing the final yield potential. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery to predict canopy nitrogen weight (g/m2) of corn fields in south-west Ontario, Canada. Simple/multiple linear regression, Random Forests, and support vector regression (SVR) were established to predict the canopy nitrogen weight from individual multispectral bands and associated vegetation indices (VI). Random Forests using the current techniques/methodologies performed the best out of all the models tested on the validation set with an R2 of 0.85 and Root Mean Square Error (RMSE) of 4.52 g/m2. Adding more spectral variables into the model provided a marginal improvement in the accuracy, while extending the overall processing time. Random Forests provided marginally better results than SVR, but the concepts and analysis are much easier to interpret on Random Forests. Both machine learning models provided a much better accuracy than linear regression. The best model was then applied to the UAV images acquired at different dates for producing maps that show the spatial variation of canopy nitrogen weight within each field at that date.


Nitrogen ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 1-25
Author(s):  
Jody Yu ◽  
Jinfei Wang ◽  
Brigitte Leblon ◽  
Yang Song

To improve productivity, reduce production costs, and minimize the environmental impacts of agriculture, the advancement of nitrogen (N) fertilizer management methods is needed. The objective of this study is to compare the use of Unmanned Aerial Vehicle (UAV) multispectral imagery and PlanetScope satellite imagery, together with plant height, leaf area index (LAI), soil moisture, and field topographic metrics to predict the canopy nitrogen weight (g/m2) of wheat fields in southwestern Ontario, Canada. Random Forests (RF) and support vector regression (SVR) models, applied to either UAV imagery or satellite imagery, were evaluated for canopy nitrogen weight prediction. The top-performing UAV imagery-based validation model used SVR with seven selected variables (plant height, LAI, four VIs, and the NIR band) with an R2 of 0.80 and an RMSE of 2.62 g/m2. The best satellite imagery-based validation model was RF, which used 17 variables including plant height, LAI, the four PlanetScope bands, and 11 VIs, resulting in an R2 of 0.92 and an RMSE of 1.75 g/m2. The model information can be used to improve field nitrogen predictions for the effective management of N fertilizer.


OENO One ◽  
2020 ◽  
Vol 54 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Marco Sozzi ◽  
Ahmed Kayad ◽  
Francesco Marinello ◽  
James Taylor ◽  
Bruno Tisseyre

Aim: The recent availability of Sentinel-2 satellites has led to an increasing interest in their use in viticulture. The aim of this short communication is to determine performance and limitation of a Sentinel-2 vegetation index in precision viticulture applications, in terms of correlation and variability assessment, compared to the same vegetation index derived from an unmanned aerial vehicle (UAV). Normalised difference vegetation index (NDVI) was used as reference vegetation index.Methods and Results: UAV and Sentinel-2 vegetation indices were acquired for 30 vineyard blocks located in the south of France without inter-row grass. From the UAV imagery, the vegetation index was calculated using both a mixed pixels approach (both vine and inter-row) and from pure vine-only pixels. In addition, the vine projected area data were extracted using a support vector machine algorithm for vineyard segmentation. The vegetation index was obtained from Sentinel-2 imagery obtained at approximately the same time as the UAV imagery. The Sentinel-2 images used a mixed pixel approach as pixel size is greater than the row width. The correlation between these three layers and the Sentinel-2 derived vegetation indices were calculated, considering spatial autocorrelation correction for the significance test. The Gini coefficient was used to estimate variability detected by each sensor at the within-field scale. The effects of block border and dimension on correlations were estimated.Conclusions: The comparison between Sentinel-2 and UAV vegetation index showed an increase in correlation when border pixels were removed. Block dimensions did not affect the significance of correlation unless blocks were < 0.5 ha. Below this threshold, the correlation was non-significant in most cases. Sentinel-2 acquired data were strongly correlated with UAV-acquired data at both the field (R2 = 0.87) and sub-field scale (R2 = 0.84). In terms of variability detected, Sentinel-2 proved to be able to detect the same amount of variability as the UAV mixed pixel vegetation index.Significance and impact of the study: This study showed at which field conditions the Sentinel-2 vegetation index can be used instead of UAV-acquired images when high spatial resolution (vine-specific) management is not needed and the vineyard is characterised by no inter-row grass. This type of information may help growers to choose the most appropriate information sources to detect variability according to their vineyard characteristics.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4442
Author(s):  
Zijie Niu ◽  
Juntao Deng ◽  
Xu Zhang ◽  
Jun Zhang ◽  
Shijia Pan ◽  
...  

It is important to obtain accurate information about kiwifruit vines to monitoring their physiological states and undertake precise orchard operations. However, because vines are small and cling to trellises, and have branches laying on the ground, numerous challenges exist in the acquisition of accurate data for kiwifruit vines. In this paper, a kiwifruit canopy distribution prediction model is proposed on the basis of low-altitude unmanned aerial vehicle (UAV) images and deep learning techniques. First, the location of the kiwifruit plants and vine distribution are extracted from high-precision images collected by UAV. The canopy gradient distribution maps with different noise reduction and distribution effects are generated by modifying the threshold and sampling size using the resampling normalization method. The results showed that the accuracies of the vine segmentation using PSPnet, support vector machine, and random forest classification were 71.2%, 85.8%, and 75.26%, respectively. However, the segmentation image obtained using depth semantic segmentation had a higher signal-to-noise ratio and was closer to the real situation. The average intersection over union of the deep semantic segmentation was more than or equal to 80% in distribution maps, whereas, in traditional machine learning, the average intersection was between 20% and 60%. This indicates the proposed model can quickly extract the vine distribution and plant position, and is thus able to perform dynamic monitoring of orchards to provide real-time operation guidance.


2021 ◽  
Author(s):  
Shuang Wu ◽  
Lei Deng ◽  
Lijie Guo ◽  
Yanjie Wu

Abstract Background: Leaf Area Index (LAI) is half of the amount of leaf area per unit horizontal ground surface area. Consequently, accurate vegetation extraction in remote sensing imagery is critical for LAI estimation. However, most studies do not fully exploit the advantages of Unmanned Aerial Vehicle (UAV) imagery with high spatial resolution, such as not removing the background (soil and shadow, etc.). Furthermore, the advancement of multi-sensor synchronous observation and integration technology allows for the simultaneous collection of canopy spectral, structural, and thermal data, making it possible for data fusion.Methods: To investigate the potential of high-resolution UAV imagery combined with multi-sensor data fusion in LAI estimation. High-resolution UAV imagery was obtained with a multi-sensor integrated MicaSense Altum camera to extract the wheat canopy's spectral, structural, and thermal features. After removing the soil background, all features were fused, and LAI was estimated using Random Forest and Support Vector Machine Regression.Result: The results show that: (1) the soil background reduced the accuracy of the LAI prediction, and soil background could be effectively removed by taking advantage of high-resolution UAV imagery. After removing the soil background, the LAI prediction accuracy improved significantly, R2 raised by about 0.27, and RMSE fell by about 0.476. (2) The fusion of multi-sensor synchronous observation data improved LAI prediction accuracy and achieved the best accuracy (R2 = 0.815 and RMSE = 1.023). (3) When compared to other variables, 23 CHM, NRCT, NDRE, and BLUE are crucial for LAI estimation. Even the simple Multiple Linear Regression model could achieve high prediction accuracy (R2 = 0.679 and RMSE = 1.231), providing inspiration for rapid and efficient LAI prediction.Conclusions: The method of this study can be transferred to other sites with more extensive areas or similar agriculture structures, which will facilitate agricultural production and management.


Sign in / Sign up

Export Citation Format

Share Document