scholarly journals Estimating the Threshold of Detection on Tree Crown Defoliation Using Vegetation Indices from UAS Multispectral Imagery

Drones ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 80 ◽  
Author(s):  
Kaori Otsu ◽  
Magda Pla ◽  
Andrea Duane ◽  
Adrián Cardil ◽  
Lluís Brotons

Periodical outbreaks of Thaumetopoea pityocampa feeding on pine needles may pose a threat to Mediterranean coniferous forests by causing severe tree defoliation, growth reduction, and eventually mortality. To cost–effectively monitor the temporal and spatial damages in pine–oak mixed stands using unmanned aerial systems (UASs) for multispectral imagery, we aimed at developing a simple thresholding classification tool for forest practitioners as an alternative method to complex classifiers such as Random Forest. The UAS flights were performed during winter 2017–2018 over four study areas in Catalonia, northeastern Spain. To detect defoliation and further distinguish pine species, we conducted nested histogram thresholding analyses with four UAS-derived vegetation indices (VIs) and evaluated classification accuracy. The normalized difference vegetation index (NDVI) and NDVI red edge performed the best for detecting defoliation with an overall accuracy of 95% in the total study area. For discriminating pine species, accuracy results of 93–96% were only achievable with green NDVI in the partial study area, where the Random Forest classification combined for defoliation and tree species resulted in 91–93%. Finally, we achieved to estimate the average thresholds of VIs for detecting defoliation over the total area, which may be applicable across similar Mediterranean pine stands for monitoring regional forest health on a large scale.

2021 ◽  
Vol 3 (1) ◽  
pp. 29-49
Author(s):  
Ghizlane Astaoui ◽  
Jamal Eddine Dadaiss ◽  
Imane Sebari ◽  
Samir Benmansour ◽  
Ettarid Mohamed

Our work aims to monitor wheat crop using a variety-based approach by taking into consideration four different phenological stages of wheat crop development. In addition to highlighting the contribution of Red-Edge vegetation indices in mapping wheat dry matter and nitrogen content dynamics, as well as using Random Forest regressor in the estimation of wheat yield, dry matter and nitrogen uptake relying on UAV (Unmanned Aerial Vehicle) multispectral imagery. The study was conducted on an experimental platform with 12 wheat varieties located in Sidi Slimane (Morocco). Several flight missions were conducted using eBee UAV with MultiSpec4C camera according to phenological growth stages of wheat. The proposed methodology is subdivided into two approaches, the first aims to find the most suitable vegetation index for wheat’s biophysical parameters estimation and the second to establish a global model regardless of the varieties to estimate the biophysical parameters of wheat: Dry matter and nitrogen uptake. The two approaches were conducted according to six main steps: (1) UAV flight missions and in-situ data acquisition during four phenological stages of wheat development, (2) Processing of UAV multispectral images which enabled us to elaborate the vegetation indices maps (RTVI, MTVI2, NDVI, NDRE, GNDVI, GNDRE, SR-RE et SR-NIR), (3) Automatic extraction of plots by Object-based image analysis approach and creating a spatial database combining the spectral information and wheat’s biophysical parameters, (4) Monitoring wheat growth by generating dry biomass and wheat’s nitrogen uptake model using exponential, polynomial and linear regression for each variety this step resumes the varietal approach, (5) Engendering a global model employing both linear regression and Random Forest technique, (6) Wheat yield estimation. The proposed method has allowed to predict from 1 up to 21% difference between actual and estimated yield when using both RTVI index and Random Forest technique as well as mapping wheat’s dry biomass and nitrogen uptake along with the nitrogen nutrition index (NNI) and therefore facilitate a careful monitoring of the health and the growth of wheat crop. Nevertheless, some wheat varieties have shown a significant difference in yield between 2.6 and 3.3 t/ha.


2021 ◽  
Vol 13 (22) ◽  
pp. 4560
Author(s):  
Lili Luo ◽  
Qingrui Chang ◽  
Qi Wang ◽  
Yong Huang

Prompt monitoring of maize dwarf mosaic virus (MDMV) is critical for the prevention and control of disease and to ensure high crop yield and quality. Here, we first analyzed the spectral differences between MDMV-infected red leaves and healthy leaves and constructed a sensitive index (SI) for measurements. Next, based on the characteristic bands (Rλ) associated with leaf anthocyanins (Anth), we determined vegetation indices (VIs) commonly used in plant physiological and biochemical parameter inversion and established a vegetation index (VIc) by utilizing the combination of two arbitrary bands following the construction principles of NDVI, DVI, RVI, and SAVI. Furthermore, we developed classification models based on linear discriminant analysis (LDA) and support vector machine (SVM) in order to distinguish the red leaves from healthy leaves. Finally, we performed UR, MLR, PLSR, PCR, and SVM simulations on Anth based on Rλ, VIs, VIc, and Rλ + VIs + VIc and indirectly estimated the severity of MDMV infection based on the relationship between the reflection spectra and Anth. Distinct from those of the normal leaves, the spectra of red leaves showed strong reflectance characteristics at 640 nm, and SI increased with increasing Anth. Moreover, the accuracy of the two VIc-based classification models was 100%, which is significantly higher than that of the VIs and Rλ-based models. Among the Anth regression models, the accuracy of the MLR model based on Rλ + VIs + VIc was the highest (R2c = 0.85; R2v = 0.74). The developed models could accurately identify MDMV and estimate the severity of its infection, laying the theoretical foundation for large-scale remote sensing-based monitoring of this virus in the future.


2020 ◽  
Vol 10 (8) ◽  
pp. 2667 ◽  
Author(s):  
Xueting Wang ◽  
Sha Zhang ◽  
Lili Feng ◽  
Jiahua Zhang ◽  
Fan Deng

Crop phenology is a significant factor that affects the precision of crop area extraction by using the multi-temporal vegetation indices (VIs) approach. Considering the phenological differences of maize among the different regions, the summer maize cultivated area was estimated by using enhanced vegetation index (EVI) time series images from the Moderate Resolution Imaging Spectroradiometer (MODIS) over the Huanghuaihai Plain in China. By analyzing the temporal shift in summer maize calendars, linear regression equations for simulating the summer maize phenology were obtained. The simulated maize phenology was used to correct the MODIS EVI time series curve of summer maize. Combining the mean absolute distance (MAD) and p-tile algorithm, the cultivated areas of summer maize were distinguished over the Hunaghuaihai Plain. The accuracy of the extraction results in each province was above 85%. Comparing the maize area of two groups from MODIS-estimated and statistical data, the validation results showed that the R2 reached 0.81 at the city level and 0.69 at the county level. It demonstrated that the approach in this study has the ability to effectively map the summer maize area over a large scale and provides a novel idea for estimating the planting area of other crops.


2020 ◽  
Vol 63 (4) ◽  
pp. 1133-1146
Author(s):  
Beichen Lyu ◽  
Stuart D. Smith ◽  
Yexiang Xue ◽  
Katy M. Rainey ◽  
Keith Cherkauer

HighlightsThis study addresses two computational challenges in high-throughput phenotyping: scalability and efficiency.Specifically, we focus on extracting crop images and deriving vegetation indices using unmanned aerial systems.To this end, we outline a data processing pipeline, featuring a crop localization algorithm and trie data structure.We demonstrate the efficacy of our approach by computing large-scale and high-precision vegetation indices in a soybean breeding experiment, where we evaluate soybean growth under water inundation and temporal change.Abstract. In agronomy, high-throughput phenotyping (HTP) can provide key information for agronomists in genomic selection as well as farmers in yield prediction. Recently, HTP using unmanned aerial systems (UAS) has shown advantages in both cost and efficiency. However, scalability and efficiency have not been well studied when processing images in complex contexts, such as using multispectral cameras, and when images are collected during early and late growth stages. These challenges hamper further analysis to quantify phenotypic traits for large-scale and high-precision applications in plant breeding. To solve these challenges, our research team previously built a three-step data processing pipeline, which is highly modular. For this project, we present improvements to the previous pipeline to improve canopy segmentation and crop plot localization, leading to improved accuracy in crop image extraction. Furthermore, we propose a novel workflow based on a trie data structure to compute vegetation indices efficiently and with greater flexibility. For each of our proposed changes, we evaluate the advantages by comparison with previous models in the literature or by comparing processing results using both the original and improved pipelines. The improved pipeline is implemented as two MATLAB programs: Crop Image Extraction version 2 (CIE 2.0) and Vegetation Index Derivation version 1 (VID 1.0). Using CIE 2.0 and VID 1.0, we compute canopy coverage and normalized difference vegetation indices (NDVIs) for a soybean phenotyping experiment. We use canopy coverage to investigate excess water stress and NDVIs to evaluate temporal patterns across the soybean growth stages. Both experimental results compare favorably with previous studies, especially for approximation of soybean reproductive stage. Overall, the proposed methodology and implemented experiments provide a scalable and efficient paradigm for applying HTP with UAS to general plant breeding. Keywords: Data processing pipeline, High-throughput phenotyping, Image processing, Soybean breeding, Unmanned aerial systems, Vegetation indices.


2020 ◽  
Vol 12 (19) ◽  
pp. 3153
Author(s):  
André Duarte ◽  
Luis Acevedo-Muñoz ◽  
Catarina I. Gonçalves ◽  
Luís Mota ◽  
Alexandre Sarmento ◽  
...  

Eucalyptus Longhorned Borers (ELB) are some of the most destructive pests in regions with Mediterranean climate. Low rainfall and extended dry summers cause stress in eucalyptus trees and facilitate ELB infestation. Due to the difficulty of monitoring the stands by traditional methods, remote sensing arises as an invaluable tool. The main goal of this study was to demonstrate the accuracy of unmanned aerial vehicle (UAV) multispectral imagery for detection and quantification of ELB damages in eucalyptus stands. To detect spatial damage, Otsu thresholding analysis was conducted with five imagery-derived vegetation indices (VIs) and classification accuracy was assessed. Treetops were calculated using the local maxima filter of a sliding window algorithm. Subsequently, large-scale mean-shift segmentation was performed to extract the crowns, and these were classified with random forest (RF). Forest density maps were produced with data obtained from RF classification. The normalized difference vegetation index (NDVI) presented the highest overall accuracy at 98.2% and 0.96 Kappa value. Random forest classification resulted in 98.5% accuracy and 0.94 Kappa value. The Otsu thresholding and random forest classification can be used by forest managers to assess the infestation. The aggregation of data offered by forest density maps can be a simple tool for supporting pest management.


2020 ◽  
Vol 12 (7) ◽  
pp. 1213 ◽  
Author(s):  
Muhammad M. Raza ◽  
Chris Harding ◽  
Matt Liebman ◽  
Leonor F. Leandro

Sudden death syndrome (SDS) is one of the major yield-limiting soybean diseases in the Midwestern United States. Effective management for SDS requires accurate detection in soybean fields. Since traditional scouting methods are time-consuming, labor-intensive, and often destructive, alternative methods to monitor SDS in large soybean fields are needed. This study explores the potential of using high-resolution (3 m) PlanetScope satellite imagery for detection of SDS using the random forest classification algorithm. Image data from blue, green, red, and near-infrared (NIR) spectral bands, the calculated normalized difference vegetation index (NDVI), and crop rotation information were used to detect healthy and SDS-infected quadrats in a soybean field experiment with different rotation treatments, located in Boone County, Iowa. Datasets collected during the 2016, 2017, and 2018 soybean growing seasons were analyzed. The results indicate that spectral features, when combined with ground-based information, can detect areas in soybean plots that are at risk for disease, even before foliar symptoms develop. The classification of healthy and diseased soybean quadrats was >75% accurate and the area under the receiver operating characteristic curve (AUROC) was >70%. Our results indicate that high-resolution satellite imagery and random forest analyses have the potential to detect SDS in soybean fields, and that this approach may facilitate large-scale monitoring of SDS (and possibly other economically important soybean diseases). It may also be useful for guiding recommendations for site-specific management in current and future seasons.


2005 ◽  
Vol 9 (15) ◽  
pp. 1-15 ◽  
Author(s):  
Edson E. Sano ◽  
Laerte G. Ferreira ◽  
Alfredo R. Huete

Abstract The all-weather capability, signal independence to the solar illumination angle, and response to 3D vegetation structures are the highlights of active radar systems for natural vegetation mapping and monitoring. However, they may present significant soil background effects. This study addresses a comparative analysis of the performance of L-band synthetic aperture radar (SAR) data and optical vegetation indices (VIs) for discriminating the Brazilian cerrado physiognomies. The study area was the Brasilia National Park, Brazil, one of the test sites of the Large-Scale Biosphere–Atmosphere (LBA) experiment in Amazonia. Seasonal Japanese Earth Resources Satellite-1 (JERS-1) SAR backscatter coefficients (σ°) were compared with two vegetation indices [normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI)] over the five most dominant cerrados’ physiognomies plus gallery forest. In contrast to the VIs, σ° from dry and wet seasons did not change significantly, indicating primary response to vegetation structures. Discriminant analysis and analysis of variance (ANOVA) showed an overall higher performance of radar data. However, when both SAR and VIs are combined, the discrimination capability increased significantly, indicating that the fusion of the optical and radar backscatter observations provides overall improved classifications of the cerrado types. In addition, VIs showed good performance for monitoring the cerrado dynamics.


2021 ◽  
Vol 13 (15) ◽  
pp. 2948
Author(s):  
Claudio I. Fernández ◽  
Brigitte Leblon ◽  
Jinfei Wang ◽  
Ata Haddadi ◽  
Keri Wang

This study used close-range multispectral imagery over cucumber plants inside a commercial greenhouse to detect powdery mildew due to Podosphaera xanthii. It was collected using a MicaSense® RedEdge camera at 1.5 m over the top of the plant. Image registration was performed using Speeded-Up Robust Features (SURF) with an affine geometric transformation. The image background was removed using a binary mask created with the aligned NIR band of each image, and the illumination was corrected using Cheng et al.’s algorithm. Different features were computed, including RGB, image reflectance values, and several vegetation indices. For each feature, a fine Gaussian Support Vector Machines algorithm was trained and validated to classify healthy and infected pixels. The data set to train and validate the SVM was composed of 1000 healthy and 1000 infected pixels, split 70–30% into training and validation datasets, respectively. The overall validation accuracy was 89, 73, 82, 51, and 48%, respectively, for blue, green, red, red-edge, and NIR band image. With the RGB images, we obtained an overall validation accuracy of 89%, while the best vegetation index image was the PMVI-2 image which produced an overall accuracy of 81%. Using the five bands together, overall accuracy dropped from 99% in the training to 57% in the validation dataset. While the results of this work are promising, further research should be considered to increase the number of images to achieve better training and validation datasets.


2021 ◽  
Vol 13 (4) ◽  
pp. 686
Author(s):  
Yu Liu ◽  
Kenji Hatou ◽  
Takanori Aihara ◽  
Sakuya Kurose ◽  
Tsutomu Akiyama ◽  
...  

Chlorophyll content in plant leaves is an essential indicator of the growth condition and the fertilization management effect of naked barley crops. The soil plant analysis development (SPAD) values strongly correlate with leaf chlorophyll contents. Unmanned Aerial Vehicles (UAV) can provide an efficient way to retrieve SPAD values on a relatively large scale with a high temporal resolution. But the UAV mounted with high-cost multispectral or hyperspectral sensors may be a tremendous economic burden for smallholder farmers. To overcome this shortcoming, we investigated the potential of UAV mounted with a commercial digital camera for estimating the SPAD values of naked barley leaves. We related 21 color-based vegetation indices (VIs) calculated from UAV images acquired from two flight heights (6.0 m and 50.0 m above ground level) in four different growth stages with SPAD values. Our results indicated that vegetation extraction and naked barley ears mask could improve the correlation between image-calculated vegetation indices and SPAD values. The VIs of ‘L*,’ ‘b*,’ ‘G − B’ and ‘2G − R − B’ showed significant correlations with SPAD values of naked barley leaves at both flight heights. The validation of the regression model showed that the index of ‘G-B’ could be regarded as the most robust vegetation index for predicting the SPAD values of naked barley leaves for different images and different flight heights. Our study demonstrated that the UAV mounted with a commercial camera has great potentiality in retrieving SPAD values of naked barley leaves under unstable photography conditions. It is significant for farmers to take advantage of the cheap measurement system to monitor crops.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 74
Author(s):  
Linsheng Huang ◽  
Yong Liu ◽  
Wenjiang Huang ◽  
Yingying Dong ◽  
Huiqin Ma ◽  
...  

Appropriate modeling methods and feature selection algorithms must be selected to improve the accuracy of early and mid-term remote sensing detection of wheat stripe rust. In the current study, we explored the effectiveness of the random forest (RF) algorithm combined with the extreme gradient boosting (XGboost) method for early and mid-term wheat stripe rust detection based on the vegetation indices extracted from canopy level hyperspectral measurements. Initially, 21 vegetation indices that were related to the early and mid-term winter wheat stripe rust were calculated on the basis of canopy level hyperspectral reflectance. Subsequently, the optimal vegetation index combination for disease detection was determined using correlation analysis (CA) combined with RF algorithms. Then, the disease severity detection model of early and mid-term winter wheat stripe rust was constructed using XGBoost method based on the optimal vegetation index combination. For the evaluation and comparison of the initial results, three commonly used classification methods, namely, RF, backpropagation neural network (BPNN), and support vector machine (SVM), were utilized. The vegetation index combinations determined by the single CA algorithm were also used to construct detection models. Compared with the detection models based on the vegetation index combination obtained using the single CA algorithm, the overall accuracy of the four detection models based on the optimal vegetation index combination based on CA combined with RF algorithms increased by 16.1% (XGBoost), 9.7% (RF), 8.1% (SVM), and 8.1% (BPNN). Among the eight models, the XGBoost detection model based on the optimal vegetation index combination using CA combined with RF algorithms, CA-RF-XGBoost, achieved the highest overall accuracy of 87.1% and the highest kappa coefficient of 0.798. Our results indicate that the RF combined with XGBoost can improve the detection accuracy of early and mid-term winter wheat stripe rust effectively at canopy scale.


Sign in / Sign up

Export Citation Format

Share Document