Biological production of medium-chain carboxylates through chain elongation: An overview

2022 ◽  
Vol 55 ◽  
pp. 107882
Author(s):  
Jianlong Wang ◽  
Yanan Yin
Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1571
Author(s):  
Panagiota Stamatopoulou ◽  
Juliet Malkowski ◽  
Leandro Conrado ◽  
Kennedy Brown ◽  
Matthew Scarborough

Medium-chain fatty acids (MCFAs) have a variety of uses in the production of industrial chemicals, food, and personal care products. These compounds are often produced through palm refining, but recent work has demonstrated that MCFAs can also be produced through the fermentation of complex organic substrates, including organic waste streams. While “chain elongation” offers a renewable platform for producing MCFAs, there are several limitations that need to be addressed before full-scale implementation becomes widespread. Here, we review the history of work on MCFA production by both pure and mixed cultures of fermenting organisms, and the unique metabolic features that lead to MCFA production. We also offer approaches to address the remaining challenges and increase MCFA production from renewable feedstocks.


Author(s):  
Daniel R. Noguera

Contribution to the International Chain Elongation Conference 2020 | ICEC 2020. 


2019 ◽  
Author(s):  
Matthew J. Scarborough ◽  
Kevin S. Myers ◽  
Timothy J. Donohue ◽  
Daniel R. Noguera

ABSTRACTChain elongation is emerging as a bioprocess to produce valuable medium-chain fatty acids (MCFA; 6 to 8 carbons in length) from organic waste streams by harnessing the metabolism of anaerobic microbiomes. Although our understanding of chain elongation physiology is still evolving, the reverse β-oxidation pathway has been identified as a key metabolic function to elongate the intermediate products of fermentation to MCFA. Here, we describe two chain-elongating microorganisms that were enriched in an anaerobic microbiome transforming the residues from a lignocellulosic biorefining process to short- and medium-chain fatty acids. Based on a multi-omic analysis of this microbiome, we predict that Candidatus Weimerbacter bifidus, gen. nov., sp. nov. used xylose to produce MCFA, whereas Candidatus Pseudoramibacter fermentans, sp. nov., used glycerol and lactate as substrates for chain elongation. Both organisms are predicted to use an energy conserving hydrogenase to improve the overall bioenergetics of MCFA production.IMPORTANCEMicrobiomes are vital to human health, agriculture, environmental processes, and are receiving attention as biological catalysts for production of renewable industrial chemicals. Chain elongation by MCFA-producing microbiomes offer an opportunity to produce valuable chemicals from organic streams that otherwise would be considered waste. However, the physiology and energetics of chain elongation is only beginning to be studied, and we are analyzing MCFA production by self-assembled communities to complement the knowledge that has been acquired from pure culture studies. Through a multi-omic analysis of an MCFA-producing microbiome, we characterized metabolic functions of two chain elongating bacteria and predict previously unreported features of this process.


Author(s):  
Qingzhuo Wang ◽  
Naief H. Al Makishah ◽  
Qi Li ◽  
Yanan Li ◽  
Wenzheng Liu ◽  
...  

Short- and medium-chain volatile esters with flavors and fruity fragrances, such as ethyl acetate, butyl acetate, and butyl butyrate, are usually value-added in brewing, food, and pharmacy. The esters can be naturally produced by some microorganisms. As ester-forming reactions are increasingly deeply understood, it is possible to produce esters in non-natural but more potential hosts. Clostridia are a group of important industrial microorganisms since they can produce a variety of volatile organic acids and alcohols with high titers, especially butanol and butyric acid through the CoA-dependent carbon chain elongation pathway. This implies sufficient supplies of acyl-CoA, organic acids, and alcohols in cells, which are precursors for ester production. Besides, some Clostridia could utilize lignocellulosic biomass, industrial off-gas, or crude glycerol to produce other branched or straight-chain alcohols and acids. Therefore, Clostridia offer great potential to be engineered to produce short- and medium-chain volatile esters. In the review, the efforts to produce esters from Clostridia via in vitro lipase-mediated catalysis and in vivo alcohol acyltransferase (AAT)-mediated reaction are comprehensively revisited. Besides, the advantageous characteristics of several Clostridia and clostridial consortia for bio-ester production and the driving force of synthetic biology to clostridial chassis development are also discussed. It is believed that synthetic biotechnology should enable the future development of more effective Clostridia for ester production.


Author(s):  
Byoung-In Sang

Contribution to the International Chain Elongation Conference 2020 | ICEC 2020. An abstract can be found in the right column.


2018 ◽  
Vol 2 (2) ◽  
pp. 372-380 ◽  
Author(s):  
M. Venkateswar Reddy ◽  
S. Venkata Mohan ◽  
Young-Cheol Chang

Chain elongation is the process by which bacteria convert ethanol and short chain fatty acids (SCFA) into medium chain fatty acids (MCFA).


1976 ◽  
Vol 160 (3) ◽  
pp. 683-691 ◽  
Author(s):  
J Knudsen ◽  
S Clark ◽  
R Dils

1. An acyl-thioester hydrolase was isolated from the cytosol of lactating-rabbit mammary gland. The purified enzyme terminates fatty acid synthesis at medium-chain (C8:0-C12:0) acids when it is incubated with fatty acid synthetase and rate-limiting concentrations of malonyl-CoA. These acids are characteristic products of the lactating gland. 2. The mol.wt. of the enzyme is 29000±500 (mean±S.D. of three independent preparations), as estimated by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. 3. The enzyme also hydrolyses acyl-CoA esters of chain lengths C10:0-C16:0 when these are used as model substrates. The greatest activity was towards dodecanoyl-CoA, and the three preparations had specific activities of 305, 1130 and 2010 nmol of dodecanoyl-CoA hydrolysed/min per mg of protein when 56muM substrate was used. 4. The way in which this enzyme controls the synthesis of medium-chain fatty acids by fatty acid synthetase is briefly discussed.


1993 ◽  
Vol 48 (7-8) ◽  
pp. 616-622 ◽  
Author(s):  
Jochen Fuhrmann ◽  
Klaus-Peter Heise

Abstract The colorless embryos of Cuphea wrightii A. Gray accumulate capric (about 30%) and lauric acid (about 50%) in their storage lipids. Fractionation studies show that the capacities for the synthesis of these medium-chain fatty acids (MCFA) from [1-14C]acetate were strictly bound to intact plastids. These, in turn, obligately required the addition of ATP. ATP could partially be substituted by ADP. Reduction of the pyridine nucleotide pool, required for opti­mum MCFA formation within the plastids, was driven by glucose 6-phosphate. Under these conditions the plastids were capable of synthesizing MCFA like the intact tissue. The presence of CoA in the incubation medium induced acyl-CoA formation. The observed accumulation of unesterified capric and lauric acid in the absence of CoA suggests that acyl-ACP thioesterase activity is involved in the chain termination. Treatment with cerulenin led to an unexpectedly small reduction of total fatty acid synthesis while the chain elongation of capric acid was clearly inhibited. A similar accumulation of capric acid at the expense of longer chain fatty acids has been observed after replacing ATP by ADP. These findings implicate that even the condensing enzymes are involved in the control of chain ter­mination.


Sign in / Sign up

Export Citation Format

Share Document