scholarly journals Finite element analysis and CT-based structural rigidity analysis to assess failure load in bones with simulated lytic defects

Bone ◽  
2014 ◽  
Vol 58 ◽  
pp. 160-167 ◽  
Author(s):  
Lorenzo Anez-Bustillos ◽  
Loes C. Derikx ◽  
Nico Verdonschot ◽  
Nathan Calderon ◽  
David Zurakowski ◽  
...  
2017 ◽  
Vol 103 (1) ◽  
pp. 196-205 ◽  
Author(s):  
Natalie E Cusano ◽  
Mishaela R Rubin ◽  
Barbara C Silva ◽  
Yu-Kwang Donovan Tay ◽  
John M Williams ◽  
...  

Abstract Context High-resolution peripheral quantitative computed tomography (HRpQCT) is a noninvasive imaging technology that can provide insight into skeletal microstructure and strength. In asymptomatic primary hyperparathyroidism (PHPT), HRpQCT imaging has demonstrated both decreased cortical and trabecular indices, consistent with evidence for increased fracture risk. There are limited data regarding changes in HRpQCT parameters postparathyroidectomy. Objective To evaluate changes in skeletal microstructure by HRpQCT in subjects with PHPT after parathyroidectomy. Design We studied 29 subjects with PHPT (21 women, 8 men) with HRpQCT at baseline and 6, 12, 18, and 24 months postparathyroidectomy. Main Outcome Measures Volumetric bone mineral density, microarchitectural indices, and finite element analysis at the distal radius and tibia. Results At both the radius and tibia, there were significant improvements in total, cortical, and trabecular volumetric bone density as early as 6 months postparathyroidectomy (24-month values for total volumetric bone density, radius: +2.8 ± 4%, tibia: +4.4 ± 4%; P < 0.0001 for both), cortical thickness (radius: +1.1 ± 2%, tibia: +2.0 ± 3%; P < 0.01 for both), and trabecular bone volume (radius: +3.8 ± 5%, tibia: +3.2 ± 4%; P < 0.0001 for both). At both sites, by finite element analysis, stiffness and failure load were improved starting at 6 months postparathyroidectomy (24-month values for failure load, radius: +6.2 ± 6%, tibia: +4.8 ± 7%; P < 0.0001 for both). Conclusions These results provide information about skeletal microarchitecture in subjects with PHPT followed through 2 years after parathyroidectomy. Estimated bone strength is improved, consistent with data showing decreased fracture risk postparathyroidectomy.


Author(s):  
C. Veena ◽  
S Saravanan ◽  
Robin Davis P. ◽  
Nandakumar Gopalan

Failure loads of sheet pile having various profiles such as U, Z and Omega/Hat profiles under compression was carried out by using equations of strength of materials and compared the failure load under various modes such as Euler’s buckling, torsional buckling and failure load due to yielding. Compared the strength of various profiles under flexure by using finite element analysis. Sheet pile can be analyzed as a unit cell for the simplified finite element analysis. For selecting the unit cell sheet pile with omega/Hat section was analyzed for profile containing one to eight numbers and checked the convergence of bending stress and maximum lateral deflection. Interlocks were analyzed for three different conditions such as plane interlock, interlock filled with bitumen and welded interlock. Location of interlock and neutral axis of the wall will affect the stability of the structure. Sheet piles with various cross sections were analyzed and studied the shear stress and bending stress along the cross section. From the structural performance of various cross sections omega/hat section can be considered as the most efficient cross section for the cold formed steel sheet pile because of its more load carrying capacity under compression and high torsion resistance and less bending stress. Results from the finite element analysis for the selection of unit cell shows that the stress and deflection value was converge at the sheet pile having 6 numbers of profiles. Keywords: sheet piles, building, resistance.


2010 ◽  
Vol 163-167 ◽  
pp. 670-675
Author(s):  
Jiang Tao Yu ◽  
Ke Quan Yu ◽  
Bo Tang

Four groups (12 in total) of welded hollow spherical joints with ribbed stiffener were tested under uniaxial loads in this paper. With the adoption of elasto-plastic model and consideration of geometric and material nonlinearity, the whole loading process of the specimens was simulated by ABAQUS. Through combining the test data and computing results, two recommendations used to quantitatively determine the ultimate failure load of spherical joint in test are proposed. The relationships between bearing capacity and various influence factors, which include the thickness and diameter of hollow sphere, diameter of steel tube are analyzed and illustrated at the end of this paper.


Sign in / Sign up

Export Citation Format

Share Document