scholarly journals Superresolution Microscopy to Study the Endogenous Role of Alpha-Synuclein in Synaptosomes

2020 ◽  
Vol 118 (3) ◽  
pp. 455a
Author(s):  
Pedro P. Vallejo Ramirez
2021 ◽  
Vol 22 (9) ◽  
pp. 4994
Author(s):  
Panagiota Mavroeidi ◽  
Maria Xilouri

Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson’s disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.


RSC Advances ◽  
2015 ◽  
Vol 5 (95) ◽  
pp. 77706-77715 ◽  
Author(s):  
Supinder Kaur ◽  
Aamir Nazir

Studies employing transgenicC. elegansmodel show that trehalose, a protein stabilizer, alleviates manifestations associated with Parkinson's diseaseviaits inherent activity and through induction of autophagic machinery.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2072 ◽  
Author(s):  
Heather T Whittaker ◽  
Yichen Qui ◽  
Conceição Bettencourt ◽  
Henry Houlden

Multiple system atrophy (MSA) is one of the few neurodegenerative disorders where we have a significant understanding of the clinical and pathological manifestations but where the aetiology remains almost completely unknown. Research to overcome this hurdle is gaining momentum through international research collaboration and a series of genetic and molecular discoveries in the last few years, which have advanced our knowledge of this rare synucleinopathy. In MSA, the discovery of α-synuclein pathology and glial cytoplasmic inclusions remain the most significant findings. Families with certain types of α-synuclein mutations develop diseases that mimic MSA, and the spectrum of clinical and pathological features in these families suggests a spectrum of severity, from late-onset Parkinson’s disease to MSA. Nonetheless, controversies persist, such as the role of common α-synuclein variants in MSA and whether this disorder shares a common mechanism of spreading pathology with other protein misfolding neurodegenerative diseases. Here, we review these issues, specifically focusing on α-synuclein mutations.


2018 ◽  
Author(s):  
Tim E. Moors ◽  
Christina A. Maat ◽  
Daniel Niedieker ◽  
Daniel Mona ◽  
Dennis Petersen ◽  
...  

AbstractPost-translational modifications of alpha-synuclein (aSyn), particularly phosphorylation at Serine 129 (Ser129-p) and truncation of its C-terminus (CTT), have been implicated in Parkinson’s disease (PD) pathology. To gain more insight in the relevance of Ser129-p and CTT aSyn under physiological and pathological conditions, we investigated their subcellular distribution patterns in normal aged and PD brains using highly-selective antibodies in combination with 3D multicolor STED microscopy. We show that CTT aSyn localizes in mitochondria in PD patients and controls, whereas the organization of Ser129-p in a cytoplasmic network is strongly associated with pathology. Nigral Lewy bodies show an onion skin-like architecture, with a structured framework of Ser129-p aSyn and neurofilaments encapsulating CTT aSyn in their core, which displayed high content of proteins and lipids by label-free CARS microscopy. The subcellular phenotypes of antibody-labeled pathology identified in this study provide evidence for a crucial role of Ser129-p aSyn in Lewy body formation.


2017 ◽  
Vol 113 (9) ◽  
pp. 2037-2054 ◽  
Author(s):  
Francesca Pennacchietti ◽  
Travis J. Gould ◽  
Samuel T. Hess

2016 ◽  
Vol 21 (5-6) ◽  
pp. 691-702 ◽  
Author(s):  
Esaú E. Rodríguez ◽  
Trinidad Arcos-López ◽  
Lidia G. Trujano-Ortiz ◽  
Claudio O. Fernández ◽  
Felipe J. González ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document